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1. Introduction 

Ordinal or ordered categorical data often occur as response variables in statistical 

applications, although some arise from grouping an underlying continuous random 

variable. McCullagh and Nelder (1989) have summarised different situations, which result 

in such polytomous data. A particular polytomous data are ordinal response variables. A 

flexible and widely used model in analysing ordinal responses is the threshold model 

(ordinal regression model McCullagh 1980). 

In many applications, the dependence structure is more complex than the independent 

observations assumed by the ordinal regression model of McCullagh (1980). In particular, 

observations often exhibit a clustering, and observations within clusters are correlated. A 

common instance of this occurs with longitudinal and repeated measurements where a 

cluster consists of the set of observations for a given subject. In this paper, we develop two 

types of models for the ordinal response variables, time dependent and time independent 

threshold models with correlated random effects. 

Random component threshold models are applied to dairy produce testing by Zhaorong et 

al (1992) and Saei and McGilchrist (1996). These models are very versatile for analysing 

two complex data sets in Saei et al (1996) and Saei and McGilchrist (1997). Jansen (1990 

and 1992) use random effects threshold models for extra variation and nested errors in 

analysing ordinal response data. Threshold model with random effects following the 

Hougaard (1986) family distribution is given in Crouchley (1995). Hedeker and Gibbons 

(1994) apply the multilevel random effects threshold models and use Gauss-Hermite 

quadrature within a Fisher scoring algorithm. Ten Have (1996) use cumulative comp-

lementtary log-log link and a log-gamma random effects distribution. The longitudinal 

ordinal response data are analysed by maximum likelihood and generalized estimating 
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equations (GEE) in Kenward, et al (1994) and Miller et al (1993) by GEE and weighted 

least squares. 

Longitudinal and repeated measures models need to account for the correlation between 

observations within subjects. The models also need to show possible changes of the 

threshold parameters (cut-points) over time/space. This paper introduces two random 

components threshold models in analogue to Saei and McGilchrist (1998). The models 

allow the observations within a subject to be correlated. Sections 2 and 3 give models and 

estimation procedures. In sections 4 and 5 estimation equations are simplified for two 

particular types of variance-covariance matrices. Section 6 presents a small simulation 

study. Sections 7 and 8 apply the estimation methods to the unpublished microbial plaque 

data and respiratory disorder data of Koch et al (1990). The results of the paper are 

discussed in the last section. 

2. Models 

Suppose that repeated observations of an ordinal response variable Y are obtained  

( itY ) at times t = 1,2,...,n from subject i, i=1, 2,...,N; itY  can take on values 1, 2, ..., M. 

The distribution of itY  depends on the linear predictor ititit u�c xη , where xit is a 

vector of p known regression variables with fixed regression coefficient  and itu  is a 

random variable. The random variables uit and uis for a subject are correlated; those 

from distinct subjects are independent. The random vector ],...,[
i21 c iniii uuuu  is assumed 

to follow multivariate normal distribution with variance-covariance matrix that is character-

rised by variance and correlation parameters ϕ and ρ. The observable variable itY  is the 

categorised value of an unobservable continuous variable Vit with conditional mean of 

itη  =E(Vit|uit). Let θk be the threshold parameter for the response category k and θkt be 
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the corresponding parameter at time t. Two cumulative distribution functions for itY  

conditional on uit, are then 

)G()P(Y itkit k ηθ −=≤                   (2.1) 

)G()P(Y itktit k ηθ −=≤                   (2.2) 

where k = 1, 2,..., M and G(.) is cumulative distribution function for an unobservable 

continuous random variable Vit with conditional mean itη . Different choices of the 

distribution function G(.) result in different threshold models. Four commonly consi-

dered threshold models correspond to the four common distributions; standard 

normal, logistic, extreme minimal and extreme maximal for G(.). The results of 

threshold model with logistic distribution for G(.) are reported in this paper. Models 

(2.1) and (2.2) are called time independent and time dependent random component 

threshold models respectively. 

The parameter θ0 is always taken as -∝, so that G(θ0 - ηit) = 0 while θM is taken to be 

+∞ , so that G(θ0 - ηit) = 1. If  contains a constant term there is a lack of identifia-

bility since any quantity added to all  values can be compensated by adding it also to 

the constant terms . This lack of identifiability is resolved by setting θ1 = 0. Thus 

there are M - 2 and n(M - 2) unknown threshold parameters (θs) under models (2.1), 

(2.2) respectively, where n is the minimum of the nis. The threshold parameters are 

collected into a vector . In general  can be expressed as = ZuX � , where X is a 

known matrix of regression variables, Z is the incidence matrix for the random effect 

vector u and ]..., , ,[ 21 ′′′′= Nuuuu  ∼N(0, ϕA) with )(diag iAA = . The iA  are ii nn ×  

matrices; their elements are functions of the correlation parameter ρ. 
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3. Estimation 

In linear mixed models, best linear unbiased predictors (BLUP), Henderson (1963 

1973,1975) are used to obtain maximum likelihood (ML) and restricted or residual 

maximum likelihood (REML) in Harville (1977), Thompson (1980), Fellner (1986, 1987) 

and Speed (1991). McGilchrist (1994) extends this approach to generalized linear mixed 

models for a broader class of problems. The method has elements in common with Schall 

(1991), Breslow and Clayton ( 1993), Wolfinger (1993), Nelder and Lee (1996) and 

Saei and McGilchrist (1998). Lee and Nelder (2001a, 2001b) further extend work of 

Nelder and Lee (1996) to the correlated non-normal data. An outline of the extension 

of Saei and McGilchrist (1998) to the correlated ordinal data is given here. Let l1 be 

the loglikelihood function of ordinal observations conditional on the random 

component vector u taken to be fixed and l2 the logarithm of the probability density 

function of u. The functions l1 and l2 are  

]||lnlnconst.)[2/1(

ln
1

0

1 1

uAuA 1��

� �

c���� 
 ¦ ¦

ϕϕ

∆

Nl

l

2

N

i

n

t it1
i

 

where )G()G( 1 isyisyis isis
ηθηθ∆ ��� �  and )G()G( 1 is)s(yissyis isis

ηθηθ∆ ��� �  

undser models (2.1) and (2.2) and ∑= N

i inN
1=0 . The following steps obtain the ML 

estimators and their approximate variance-covariance matrices. Step 1. Estimates �T , 

�E  and �u  are obtained by maximising l = l1 + l2 for the given initial values of ϕ and ρ. 

These estimates are then used as an initial step in finding ML and REML estimates of 

ϕ and ρ via Anderson (1973) and Henderson (1973) algorithm. Starting from initial 

values k = 0, 0 , 0 , u0, ϕ0 and ρ0 (hence A0), the estimating equations set out by 

using the Newton-Raphson method 
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initial estimates of the parameters.  

Step 2. Once iterations of (3.1) have converged to 
~

 and u~ , let uZX ~~~ � , 

B c� ~~/1
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0
1

0
* ][

��� � BZZAT ϕ . The ML estimate of the variance 

component parameter ϕ is estimated by 
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*

0
-11
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The evaluation of (3.1) and (3.2) is then iterated with initial values set to 
~

, 
~

, u~  

and ϕ̂ . Step 3. After convergence of steps 1 and 2, the ML estimate of the correlation 

parameter ρ is  

  (.)ˆ h ρ                        (3.3 ) 

where h(.) is a function of )}()/tr{( 00
1 ρ∂ρ AA −∂ , }])/(tr{[ˆ *

0
11

(ML) TA ∂ρϕ −− ∂  and 

uAu ~)/(~
0

1 ∂ρ∂′ − . Note that evaluation of the h(.) components depends on varinac-

covariance matrix of the random effect u. The new values 
~

, 
~

, u~ , ϕ̂  and ρ̂  are 

substituted for 0 , 0 , u0, ϕ0 and ρ0 in (3.1), and then (3.1) - (3.3) are evaluated again. 

At convergence, ϕ̂  and ρ̂  are ML estimates ( )ML(ϕ̂  and (ML)ρ̂ ) of ϕ and ρ with 

associated asymptotic variance-covariance matrix of 
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V and its inverse corresponding to the dimensions of the ,  and u. Replacing *T  

by T33 in all above three steps (3.1 - .3.3) yields REML estimates of the parameters 

and variance components ϕ and ρ. Similarly, replacing *T  by T33 in (3.4) gives the 

asymptotic variance-covariance matrix for the REML estimators )REML(̂ϕ  and (REML)ρ̂ . 

4. Exchangeable and AR(1) Models  

A simple form of dependence arises when the random components of u have an 

exchangeable correlation (constant correlation) ρ. The variance covariance matrix for 

the random components u is ρA where A is a block diagonal matrix with blocks Ai = 

ii JI ρρ +− )1(  and i = 1,2,..., N; Ii is an ii nn ×  identity matrix and Ji is a ii nn ×  

matrix with all elements equal to 1. Let [ ]**
ijTT =  with *

ijT  as a ji nn u  matrix, the ML 

estimation equation for ρ, i.e., h(.) in (3.3) is then 
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The autoregressive first order, AR(1) assumes that the dependence of the observations 

for a subject decreases with their distance in time. In this case, the variance covariance 
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matrix of the random components u is ϕA, where A is a block diagonal matrix with 

the blocks ( ) [ ]sti a
121

−−= ρA , ast = ρ|s-t| , and s, t = 1, 2,…, ni. Let a = N12 )1(2 −−− ρ , 

i

N

i ii

N

i
iii uuT ~~)(trb

1
1

* ∑∑ =
=

′+=  and i

N

i ii

N

i
iii uuT ~~)(trc

1
1

* ∑∑ =
=

′+= , the h(.) in (3.3) is  

 ρ̂ = cˆb)ˆ2(a- -1-1-1 ϕϕ+  

where i  is a ii nn ×  diagonal matrix with diagonal elements (0,1,…,1,0) and i  is a 

ii nn ×  matrix and has -1 above and below principal diagonal and zero all other 

elements. The REML counterparts are obtained by replacing *T  by T33. 

5. Simulation  

A limited simulation study was undertaken to examine the performance of the method for 

several parameter combinations. Observations were generated from time independent 

threshold model )(Gy)P(Yit ity ηθ −=≤  where G(.) is the logistic function and 

ititit ux ++= 10 ββη . The uit are generated from an AR(1) with parametees ρ and ϕ. 

The xit are randomly assigned to 1 or 0 and observations are obtained at time t = 1, 

2,…, 5 for i = 1, 2,…, 30. Estimates of parameters are obtained, and the process is 

replicated 1000 times. Table 1 shows the results by REML method for the different 

combinations of the parameters in the variances in which ρ and ϕ are allowed to 

change. The threshold and fixed parameters are held constant. The quantities are 

reported in Table 1 are the true parameters values (TV), the average of the biases 

(AB), standard error over 1000 simulations (SE1) and the average asymptotic standard 

error of 1000 simulations (SE2). 

The results indicate that both ML (not reported in the paper) and REML estimators 

of threshold parameters and variances components ρ and ϕ are negatively biased. The 
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REML method reduces biases of the estimators. With increased variance components 

the bias of the estimator ϕ is increased. The relative bias (bias/(true value)) of 

estimating ρ is much smaller than for ϕ. The bias of the REML estimator of ρ is not 

significant for the parameter set 3. The biases of the estimators of β0 and β1 are small 

and their standard errors over simulation SE1 are in agreement with SE2 in both ML 

and REML methods. This is also true for the correlation parameter ρ. However, the 

SE2 of the estimator of ϕ is greater than SE1. This indicates that the method 

overestimates the standard error of the estimator of ϕ. However, the results of other 

simulations (not reported) show that the difference between SE1 and SE2 decreases by 

increasing the number of subjects from 30 to 100. 

6. Application To Microbial Plaque Data 

The preceding theory is applied to unpublished microbial plaque data. The data are 

obtained from Nasr Isfahani. A study was planned to determine the effective time of 

brushing teeth according to Bass method by Nasr Isfahani (1999). A total of 60 dentist 

students were randomly selected and assigned to 6 groups of 10 each students. The 

students were asked not to use any procedure to remove plaque 24 hours before the 

visit. At the baseline and after brushing teeth for 1, 2,… , 6 minutes, the plaque indices 

(sinless and loe plaque index) were recorded on a four point ordinal scale (0 = 

excellent, 1 = good, 2 = not bad and 3 = bad) for all four tooth surfaces (mesial, distal, 

fasial and lingual). Data on tooth number 1 in the upper-left quadrant are used here. 

The model fitted is  

  isijitis u��� )base()time(0 ωββη  

where β0 is an intercept, βt is the time effect, itime  is the brushing time for ith 

student, ωj is the initial value effect, basi is the initial value of plaque of the ith student 
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at base-line and uis is the sth tooth surface (s =1= mesial, s = 2 =distal, s = 3 = fasial 

and s = 4 = lingual) random effect for student i. Random vector ( )′= 4 21 ,..., , iiii uuuu  

is a multivariate normal with zero mean and exchangeable variance-covariance 

structure. Note that the AR(1) model is not fitted since the distance between two-tooth 

surfaces can not be meaningfully defined. 

Table 2 shows the results for the time dependent threshold model (2.2). There is a 

significant variation between students with REML estimate value of ϕ = 5.55 and 

standard error of 2.03. The random effects for a student are highly correlated.  

The paired comparisons show that there is a statistically significant changes from 

β1 to β2 but not from β2, β3, … , β6. This indicates that the effective time to remove 

plaque is between 2 and 3 minutes. The initial value of plaque has no statistically 

significant effect. 

The results also shows that the threshold parameters θks (k =1,2 and s = 1, 2, … , 4) 

have statistically significant changes over four tooth surfaces (mesial, distal, fasial and 

lingual). The model (2.2) yields the same predicted values as observed in 88.3%. 

7. Application to Respiratory Disorder Data 

A second application is to respiratory disorder given by Koch et al (1990). A total of 111 

patients within two centres were randomly assigned to two treatments (active, placebo).  

At the baseline, status of each patient was recorded according to a five point ordinal 

response scale (0 = terrible, 1 = poor, 2 = fair, 3 = good, 4 = excellent), and also at each of 

four visits (visit 1, visit 2, visit 3, visit 4) during the time period over which the treatments 

were administrated. Patients’ characteristics like age and gender were also recorded at the 

time of entry to the study. The model is 

  itijiiittiit u������ )(stut)(gen)(age)(treat)(c0 ωλγβαβη  
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where risk variables are centre (ci, 1 = centre 1, 0 = centre 2), age in years at base-line 

(agei), gender (geni, 1 = male, 2 = famle ), status at base-line (stuti, j = 1, 2,… , 5), treatment 

(treatit, 1 = active, 0 = placebo) and uit is ith patient random effect. The results of 

fitting model (8.1) via REML method for AR(1) are given in Table 3. 

The results show that the random components are highly correlated for a patient with 

REML estimate of ρ = 0.9 and standard error of 0.04. The center, gender effects α, λ 

and age regression coefficient γ are not significant. The initial status of patients has a 

statistically significant effect. It indicates that patients with status in lower category 

(terrible) at base-line tend to give response in lower category in the end of study. 

Although the treatment effect βt increases from the first visit to the second and then 

decreases, the paired comparisons show that the changes are not statistically 

significant.  

By using asymptotic distribution of the estimators βt and assuming that the βt are 

constant over time, it can be seen that the treatment is highly statistically significant. 

The estimate of treatment effect is positive, indicating that patients in the treatment 

active group are more likely to respond in the higher categories. The results (not 

reported in the paper) of fitting model (2.2) show that the changes of the threshold 

parameters  over time are not statistically significant. Under model (2.1), the 

observed and predicted values agree in 66.8% and 72.8% for an exchangeable and an 

AR(1) models respectively. These percentages show that the model (2.1) with AR(1) 

correlation structure is a suitable model for this data. 

8. Discussion 

A simple method of analysing the correlated ordinal response data is presented. Two types of 

modelling, time independent and time dependent threshold models are used. The latter model 
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takes into account possible changes of the threshold parameters over time. The estimation 

and inference approaches have been applied to two data sets. The results (Tables 2 and 3) 

show that observations are highly correlated within clusters in both applications. The 

threshold parameters have significant changes over four tooth surfaces in the first 

application. These parameters are constant over time period of study in the second 

application. Although the threshold parameters are changing over four tooth surfaces, 

the conclusions do not change from the model (2.1) to the model (2.2).  However, in 

another application (submitted for the publication) the significant changes of the 

threshold parameters yielded different conclusions from the models (2.1) and (2.2). 

The results of a limited simulation (Table 1) show that the REML estimates of the 

fixed effect and threshold parameters are very good. The REML estimates are even 

unbiased for some of those parameters. The REML estimator of the variance 

parameter ϕ is negatively biased. However, the bias of the REML estimator for the 

correlation parameter ρ is very small. The method provides very good estimates of the 

standard error of  and correlation parameter ρ. It overestimates the standard error of 

the estimator of ϕ. 

The goodness of fit of the model is based on a simple method of Saei and 

McGilchrist (1998). Further work is needed on the goodness of fit of the model. The 

biases in estimation of the variance component ϕ and its standard error are the other 

problems of the method. 

Appendix A 

The elements in the asymptotic variance-covaraince matrix (3.4) for the ML 

estimators of the variance components ϕ and ρ are; 

)(tr *11
1 TA 

 ϕr , )(tr 1**

11
�� ATAT 1r , k1= ])/(tr[ *11 TA ρϕ ∂∂ −− , 
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])/(tr[ 1
1 AA ρν ∂∂= − , ])/()/(tr[ 1111

11
−−−− ∂∂∂∂= AAAA ρρν , 

k11= ])/(tr[ 1*1* −− ∂∂ ATAT ρ , )]/()/(tr[ 1*1*(11)
11 ρρ ∂∂∂∂= −− ATATk   

and 

])/()/(tr[ 1*11(11)
1 AATA ρρϕ ∂∂∂∂= −−−k . 

The replacement of *T  by T33 yields corresponding components for the asymptotic 

variance-covariance matrix of the REML estimtors of ϕ and ρ. 
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Table 1.  REML estimation for the simulated data. 

  ϕ ρ θ1 θ2 θ3 θ4 β0 β1 
 TV 0.5 0.1 0.5 2 3.5 5 0.5 1 
Par 1 AB -0.06 -0.08 0.0 -0.03 -0.06 0.07 -0.01 0.06 
 SE1 0.11 0.44 0.11 0.21 0.31 0.56 0.25 0.24 
 SE2 0.46 0.58 0.12 0.22 0.34 0.66 0.26 0.25 
 TV 0.5 0.3 0.5 2 3.5 5 0.5 1 
Par 2 AB -0.05 -0.11 0.1 -0.05 -0.06 0.03 -0.02 0.04 
 SE1 0.12 0.44 0.12 0.22 0.34 0.51 0.26 0.24 
 SE2 0.46 0.56 0.12 0.22 0.34 0.66 0.26 0.25 
 TV 1 0.7 0.5 2 3.5 5 0.5 1 
Par 3 AB -0.45 0.01 -0.04 -0.21 -0.33 -0.31 -0.04 0.04 
 SE1 0.26 0.21 0.11 0.22 0.32 0.54 0.31 0.34 
 SE2 0.48 0.25 0.12 0.22 0.31 0.54 0.34 0.33 

* Par i = Parameter set i (i = 1, 2, 3). 
 

Table 2. REML estimates of parameter     Table 3. REML estimates of parameter  
(Est), standard errors (SE),z-value (Est/SE).       (Est), standard error (SE),z-value (Est/SE). 

 
Par Est SE Est/SE  Par Est SE Est/SE 

ϕ 5.55 2.03 2.73  ϕ 0.75 0.37 2.01 

ρ 0.91 0.14 6.5  ρ 0.9 0.04 22.5 

θ11 4.33 0.86 5.05  θ1 1.55 0.23 6.78 

θ12 5.9 1.04 5.68  θ2 4.05 0.3 13.74 

θ13 5.66 1.02 5.58  θ3 5.97 0.33 17.94 

θ14 5.66 1.01 5.58  β0 7.01 1.11 6.29 

θ21 4.62 0.87 5.31  β1 1.65 0.53 3.1 

θ22 8.39 1.44 5.84  β2 2.36 0.55 4.31 

θ23 8.12 1.37 5.92  β3 2.08 0.54 3.82 

θ24 8.12 1.37 5.92  β4 1.57 0.54 2.93 

β0 -2.22 0.76 -2.93  α -0.62 0.49 -1.27 

β1 6.22 1.68 3.7  γ -0.03 0.02 -1.52 

β2 10.62 1.9 5.59  λ -0.56 0.61 -0.92 

β3 7.62 1.7 4.49  ω1 -4.46 1.5 -2.97 

β4 7.31 1.67 4.39  ω2 -3.78 0.83 -4.55 

β5 5.24 1.72 3.05  ω3 -2.41 0.73 -3.32 

β6 5.68 1.73 3.29  ω4 -0.66 0.74 -0.9 

ω1 -0.39 0.9 -0.43  *ω5 is fixed at zero to achieve identifiability 
ω2 -0.21 0.89 -0.24 
ω3 0.23 0.83 0.28 

• Par = Parameter  
• ω4 is fixed at zero to achieve identifiability  


