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Abstract

Threshold models for ordinal longitudinal/repeated measurements data need to account for the
correlation between observations within each subject. Two variance-covariance structures are
introduced for two types of threshold models. Estimation of the parameters in the linear
predictor and components of variance are derived in the general form. A small simulation
study is carried out to support the estimation and inference methods. These methods are then
applied to two practical examples.
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Summary. Threshold models for ordinal longitudinal/repeated measurements data
need to account for the correlation between observations within each subject. Two
variance-covariance structures are introduced for two types of threshold models.
Estimation of the parameters in the linear predictor and components of variance are
derived in the general form. A small simulation study is carried out to support the
estimation and inference methods. These methods are then applied to two practical
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1. Introduction

Ordinal or ordered categorical data often occur as response variables in statistical
applications, although some arise from grouping an underlying continuous random
variable. McCullagh and Nelder (1989) have summarised different situations, which result
in such polytomous data. A particular polytomous data are ordinal response variables. A
flexible and widely used model in analysing ordinal responses is the threshold model
(ordinal regression model McCullagh 1980).
In many applications, the dependence structure is more complex than the independent
observations assumed by the ordinal regression model of McCullagh (1980). In particular,
observations often exhibit a clustering, and observations within clusters are correlated. A
common instance of this occurs with longitudinal and repeated measurements where a
cluster consists of the set of observations for a given subject. In this paper, we develop two
types of models for the ordinal response variables, time dependent and time independent
threshold models with correlated random effects.
Random component threshold models are applied to dairy produce testing by Zhaorong et
al (1992) and Saei and McGilchrist (1996). These models are very versatile for analysing
two complex data sets in Saei et al (1996) and Saei and McGilchrist (1997). Jansen (1990
and 1992) use random effects threshold models for extra variation and nested errors in
analysing ordinal response data. Threshold model with random effects following the
Hougaard (1986) family distribution is given in Crouchley (1995). Hedeker and Gibbons
(1994) apply the multilevel random effects threshold models and use Gauss-Hermite
quadrature within a Fisher scoring algorithm. Ten Have (1996) use cumulative comp-
lementtary log-log link and a log-gamma random effects distribution. The longitudinal

ordinal response data are analysed by maximum likelihood and generalized estimating



equations (GEE) in Kenward, et al (1994) and Miller et al (1993) by GEE and weighted
least squares.

Longitudinal and repeated measures models need to account for the correlation between
observations within subjects. The models also need to show possible changes of the
threshold parameters (cut-points) over time/space. This paper introduces two random
components threshold models in analogue to Saei and McGilchrist (1998). The models
allow the observations within a subject to be correlated. Sections 2 and 3 give models and
estimation procedures. In sections 4 and 5 estimation equations are simplified for two
particular types of variance-covariance matrices. Section 6 presents a small simulation
study. Sections 7 and 8 apply the estimation methods to the unpublished microbial plaque
data and respiratory disorder data of Koch et al (1990). The results of the paper are
discussed in the last section.

2. Models
Suppose that repeated observations of an ordinal response variable Y are obtained

(Y, ) at times ¢t = 1,2,....n from subject i, i=1, 2,...,N; Y, can take on values 1, 2, ..., M.

The distribution of Y, depends on the linear predictor 7, = x,p +u, , where x;, is a

it
vector of p known regression variables with fixed regression coefficient f and u, is a
random variable. The random variables u;; and u;; for a subject are correlated; those
from distinct subjects are independent. The random vector w; = [u;,,1;,,...u;, ] is assumed
to follow multivariate normal distribution with variance-covariance matrix that is character-
rised by variance and correlation parameters ¢ and p. The observable variable Y, is the

categorised value of an unobservable continuous variable V;, with conditional mean of

1., =E(Vilui;). Let 6, be the threshold parameter for the response category k and 6 be



the corresponding parameter at time z. Two cumulative distribution functions for Y,
conditional on u;;, are then

P(Y, <k)=G(6,-n,) (2.1)

P(Y, <k)=G(6,-n,) (2.2)
where k=1, 2,..., M and G(.) is cumulative distribution function for an unobservable
continuous random variable V;; with conditional mean 7, . Different choices of the
distribution function G(.) result in different threshold models. Four commonly consi-
dered threshold models correspond to the four common distributions; standard
normal, logistic, extreme minimal and extreme maximal for G(.). The results of
threshold model with logistic distribution for G(.) are reported in this paper. Models
(2.1) and (2.2) are called time independent and time dependent random component
threshold models respectively.
The parameter 6 is always taken as -o<, so that G(6, - 77;;) = 0 while 6, is taken to be

+oo, so that G(&) - 17;) = 1. If m contains a constant term there is a lack of identifia-
bility since any quantity added to all @ values can be compensated by adding it also to
the constant terms m. This lack of identifiability is resolved by setting 8, = 0. Thus
there are M - 2 and n(M - 2) unknown threshold parameters (6s) under models (2.1),

(2.2) respectively, where n is the minimum of the n;s. The threshold parameters are

collected into a vector 0. In general n can be expressed as n=Xp + Zu, where X is a

known matrix of regression variables, Z is the incidence matrix for the random effect

vector u and u=[u],u},....uy]" ~N(0, @A) with A =diag(A,). The A, are n, Xn,

matrices; their elements are functions of the correlation parameter p.



3. Estimation

In linear mixed models, best linear unbiased predictors (BLUP), Henderson (1963
1973,1975) are used to obtain maximum likelihood (ML) and restricted or residual
maximum likelihood (REML) in Harville (1977), Thompson (1980), Fellner (1986, 1987)
and Speed (1991). McGilchrist (1994) extends this approach to generalized linear mixed
models for a broader class of problems. The method has elements in common with Schall
(1991), Breslow and Clayton ( 1993), Wolfinger (1993), Nelder and Lee (1996) and
Saei and McGilchrist (1998). Lee and Nelder (2001a, 2001b) further extend work of
Nelder and Lee (1996) to the correlated non-normal data. An outline of the extension
of Saei and McGilchrist (1998) to the correlated ordinal data is given here. Let [, be
the loglikelihood function of ordinal observations conditional on the random
component vector u taken to be fixed and /, the logarithm of the probability density
function of u. The functions /, and /, are

=22 Ind,

I, =—(1/2)[const.+ Nng +In1 Al +¢ 'u’'A™"u]

Where Ais = (}(6)'1_Y - nix) - G(6yl_Y -1 nix) and Ais = G(6syl.Y - nix) - (}(6&()'1_Y -1) nix)
undser models (2.1) and (2.2) and N, = ZlN:l n, . The following steps obtain the ML

estimators and their approximate variance-covariance matrices. Step 1. Estimates 0,
B and U are obtained by maximising [ = [, + [, for the given initial values of ¢ and p.
These estimates are then used as an initial step in finding ML and REML estimates of
@ and p via Anderson (1973) and Henderson (1973) algorithm. Starting from initial

values k =0, 0,, B,, wo, @ and py (hence Ay), the estimating equations set out by

using the Newton-Raphson method
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AP, , d /N, , ILIBM,, Il /M N, and I° /MM, are evaluated at
initial estimates of the parameters.
Step 2. Once iterations of (3.1) have converged to B and i, let 7j=Xp+Zi,
B=-0L /A, T =[¢;'A;'+Z"BZ]"'. The ML estimate of the variance
component parameter ¢ is estimated by

¢=" n) (A (p)T) + WA (py)il] (3.2)

The evaluation of (3.1) and (3.2) is then iterated with initial values set to 0, ﬁ , u
and ¢ . Step 3. After convergence of steps 1 and 2, the ML estimate of the correlation

parameter pis

p=h() (3.3)
where h(.) is a function of tr{(0A™"/dp)A(p,)}, Pou,[tr{(@A™/Ip,)T }] and
(oA /9dp,)ii. Note that evaluation of the A(.) components depends on varinac-

covariance matrix of the random effect u. The new values 0 , B , U, ¢ and p are

substituted for 0, B,, wo, ¢, and p, in (3.1), and then (3.1) - (3.3) are evaluated again.
At convergence, ¢ and p are ML estimates (§,,, and J,,,) of ¢ and p with

associated asymptotic variance-covariance matrix of



(ML)

Var( ?(ML) ) =2 ¢_2 (No - 2’]) + ¢)_4r11 (0—1 (2kl V- ¢_lk“) B (34)
(¢_2kl(1”) +V, - Zkl(“))

where N, = Zl n, ; ri, rins ki, vi, vins ki, k" and k' are given in appendix A.
Vl 1 V12 V13 Tl 1 T12 T13

Let V=|V, V, V,land V'=| . T, T,| be the partitions of the matrix
V31 V32 V33 : : T33

V and its inverse corresponding to the dimensions of the 8, p and u. Replacing T
by T3 in all above three steps (3.1 - .3.3) yields REML estimates of the parameters
and variance components @ and p. Similarly, replacing T" by Ts3 in (3.4) gives the

asymptotic variance-covariance matrix for the REML estimators @ gy, and Py, -

4. Exchangeable and AR(1) Models

A simple form of dependence arises when the random components of u have an
exchangeable correlation (constant correlation) p. The variance covariance matrix for
the random components u is pA where A is a block diagonal matrix with blocks A; =
A-p)X,+pJ, and i = 1,2,..., N; I; is an n, Xn, identity matrix and J; is a n, Xn,
matrix with all elements equal to 1. Let T" = [T; ] with T; as a n, x n; matrix, the ML
estimation equation for p, i.e., 4(.) in (3.3) is then

p=-(ap; +bp, +c)'d,
where
a=Y " n(n—Db=>"[¢"((n,~1)*(b, +b,)— (n,~ )by, +b,))+n,(n,~1)2~n,)]

c= 225\;1[(0_1(1)11' +b,)—n(n,—1)], d= ZL(D»I[(bn +b,)—(by +b,)l. b, =W i,
b,, = tr(T;), by, =0/J 4, and b,, = tr(J, T,).

rn

The autoregressive first order, AR(1) assumes that the dependence of the observations

for a subject decreases with their distance in time. In this case, the variance covariance
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matrix of the random components u is @A, where A is a block diagonal matrix with

the blocks A, =(1-p*J'[a,]. ay=p"" ., and s, t=1,2,...,m. Leta= 21— p>)"' N,

N N
b=) u(T;A)+ Y " WA and c= 21: tr(T,T,)+ Y." /T, , the A(.) in (3.3) is

i=1
p=-(@+20"d)'¢'c
where A, is a n, Xn, diagonal matrix with diagonal elements (0,1,...,1,0) and T, is a
n; Xn, matrix and has -1 above and below principal diagonal and zero all other

elements. The REML counterparts are obtained by replacing T" by Ts.

5. Simulation

A limited simulation study was undertaken to examine the performance of the method for
several parameter combinations. Observations were generated from time independent

threshold model P(Y, <y)=G(6,-7,) where G(.) is the logistic function and
n, =p,+x,b, +u,. The u; are generated from an AR(1) with parametees p and ¢.

The x;; are randomly assigned to 1 or O and observations are obtained at time 7 = 1,
2,...,5fori=1,2,..., 30. Estimates of parameters are obtained, and the process is
replicated 1000 times. Table 1 shows the results by REML method for the different

combinations of the parameters in the variances in which p and ¢ are allowed to

change. The threshold and fixed parameters are held constant. The quantities are
reported in Table 1 are the true parameters values (TV), the average of the biases
(AB), standard error over 1000 simulations (SE1) and the average asymptotic standard
error of 1000 simulations (SE2).

The results indicate that both ML (not reported in the paper) and REML estimators

of threshold parameters and variances components o and ¢ are negatively biased. The



REML method reduces biases of the estimators. With increased variance components
the bias of the estimator ¢ is increased. The relative bias (bias/(true value)) of
estimating p is much smaller than for ¢. The bias of the REML estimator of p is not
significant for the parameter set 3. The biases of the estimators of £ and S are small
and their standard errors over simulation SEI are in agreement with SE2 in both ML
and REML methods. This is also true for the correlation parameter p. However, the
SE2 of the estimator of ¢ is greater than SE1. This indicates that the method
overestimates the standard error of the estimator of ¢. However, the results of other
simulations (not reported) show that the difference between SE1 and SE2 decreases by
increasing the number of subjects from 30 to 100.

6. Application To Microbial Plaque Data

The preceding theory is applied to unpublished microbial plaque data. The data are
obtained from Nasr Isfahani. A study was planned to determine the effective time of
brushing teeth according to Bass method by Nasr Isfahani (1999). A total of 60 dentist
students were randomly selected and assigned to 6 groups of 10 each students. The
students were asked not to use any procedure to remove plaque 24 hours before the
visit. At the baseline and after brushing teeth for 1, 2,..., 6 minutes, the plaque indices
(sinless and loe plaque index) were recorded on a four point ordinal scale (0 =
excellent, 1 = good, 2 = not bad and 3 = bad) for all four tooth surfaces (mesial, distal,
fasial and lingual). Data on tooth number 1 in the upper-left quadrant are used here.

The model fitted is
n, = B, + p,(time,) + @, (base,) + u,
where [ is an intercept, [ is the time effect, time. is the brushing time for ith

student, ®; is the initial value effect, bas; is the initial value of plaque of the ith student
9



at base-line and u;, is the sth tooth surface (s =1= mesial, s = 2 =distal, s = 3 = fasial

and s = 4 = lingual) random effect for student ;. Random vector u, = (i, u,, ,...,u;,, )

is a multivariate normal with zero mean and exchangeable variance-covariance
structure. Note that the AR(1) model is not fitted since the distance between two-tooth
surfaces can not be meaningfully defined.

Table 2 shows the results for the time dependent threshold model (2.2). There is a

significant variation between students with REML estimate value of ¢ = 5.55 and
standard error of 2.03. The random effects for a student are highly correlated.

The paired comparisons show that there is a statistically significant changes from
B to B but not from [, Bs, ..., Bs. This indicates that the effective time to remove
plaque is between 2 and 3 minutes. The initial value of plaque has no statistically
significant effect.

The results also shows that the threshold parameters 6 (k =1,2 and s = 1, 2, ..., 4)

have statistically significant changes over four tooth surfaces (mesial, distal, fasial and
lingual). The model (2.2) yields the same predicted values as observed in 88.3%.
7. Application to Respiratory Disorder Data
A second application is to respiratory disorder given by Koch et al (1990). A total of 111
patients within two centres were randomly assigned to two treatments (active, placebo).
At the baseline, status of each patient was recorded according to a five point ordinal
response scale (0 = terrible, 1 = poor, 2 = fair, 3 = good, 4 = excellent), and also at each of
four visits (visit 1, visit 2, visit 3, visit 4) during the time period over which the treatments
were administrated. Patients’ characteristics like age and gender were also recorded at the
time of entry to the study. The model is

n. = By + a(c,) + B,(treat,, ) + y(age,) + A(gen,) + @, (stut,) +u,

10



where risk variables are centre (c;, 1 = centre 1, 0 = centre 2), age in years at base-line
(age;), gender (gen;, 1 = male, 2 = famle ), status at base-line (stut;, j = 1, 2,..., 5), treatment
(treat;, 1 = active, 0 = placebo) and u;, is ith patient random effect. The results of
fitting model (8.1) via REML method for AR(1) are given in Table 3.

The results show that the random components are highly correlated for a patient with
REML estimate of p = 0.9 and standard error of 0.04. The center, gender effects o, 4
and age regression coefficient ¥ are not significant. The initial status of patients has a
statistically significant effect. It indicates that patients with status in lower category
(terrible) at base-line tend to give response in lower category in the end of study.
Although the treatment effect S, increases from the first visit to the second and then
decreases, the paired comparisons show that the changes are not statistically
significant.

By using asymptotic distribution of the estimators [, and assuming that the [, are
constant over time, it can be seen that the treatment is highly statistically significant.
The estimate of treatment effect is positive, indicating that patients in the treatment
active group are more likely to respond in the higher categories. The results (not
reported in the paper) of fitting model (2.2) show that the changes of the threshold
parameters O over time are not statistically significant. Under model (2.1), the
observed and predicted values agree in 66.8% and 72.8% for an exchangeable and an
AR(1) models respectively. These percentages show that the model (2.1) with AR(1)
correlation structure is a suitable model for this data.

8. Discussion

A simple method of analysing the correlated ordinal response data is presented. Two types of

modelling, time independent and time dependent threshold models are used. The latter model

11



takes into account possible changes of the threshold parameters over time. The estimation
and inference approaches have been applied to two data sets. The results (Tables 2 and 3)
show that observations are highly correlated within clusters in both applications. The
threshold parameters have significant changes over four tooth surfaces in the first
application. These parameters are constant over time period of study in the second
application. Although the threshold parameters are changing over four tooth surfaces,
the conclusions do not change from the model (2.1) to the model (2.2). However, in
another application (submitted for the publication) the significant changes of the
threshold parameters yielded different conclusions from the models (2.1) and (2.2).

The results of a limited simulation (Table 1) show that the REML estimates of the
fixed effect and threshold parameters are very good. The REML estimates are even
unbiased for some of those parameters. The REML estimator of the variance

parameter ¢ is negatively biased. However, the bias of the REML estimator for the
correlation parameter p is very small. The method provides very good estimates of the

standard error of B and correlation parameter p. It overestimates the standard error of

the estimator of ¢.

The goodness of fit of the model is based on a simple method of Saei and
McGilchrist (1998). Further work is needed on the goodness of fit of the model. The
biases in estimation of the variance component ¢ and its standard error are the other
problems of the method.

Appendix A
The elements in the asymptotic variance-covaraince matrix (3.4) for the ML

estimators of the variance components ¢ and p are;

r=0 (AT, r, =t(T'A'T'A™), k= ¢ 'tr[ (DA™ /9p)T"],
12



v, =tr[(0A™ /9p)A], v,, = tr[ (@A /9p)A~ (A" /dp)A '],

ki= t[T (OA™' /9p)T'A™'], k'|" = tr[T"(OA™' /9p)T (0A™' /9p)]

and

k' =@ 't[(0A™ /9p)T (0A™' /9p)A].

The replacement of T" by T3 yields corresponding components for the asymptotic

variance-covariance matrix of the REML estimtors of ¢ and p.
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Table 1. REML estimation for the simulated data.

K p 6 6 6 6 B Bi
TV 0.5 0.1 0.5 2 3.5 5 0.5 1
Par 1 AB -0.06 -0.08 0.0 -0.03 -0.06 0.07 -0.01 0.06
SE1 0.11 0.44 0.11 0.21 0.31 0.56 0.25 0.24
SE2 0.46 0.58 0.12 0.22 0.34 0.66 0.26 0.25
TV 0.5 0.3 0.5 2 3.5 5 0.5 1
Par 2 AB -0.05 -0.11 0.1 -0.05 -0.06 0.03 -0.02 0.04
SE1 0.12 0.44 0.12 0.22 0.34 0.51 0.26 0.24
SE2 0.46 0.56 0.12 0.22 0.34 0.66 0.26 0.25
TV 1 0.7 0.5 2 3.5 5 0.5 1
Par 3 AB -0.45 0.01 -0.04 -0.21 -0.33 -0.31 -0.04 0.04
SE1 0.26 0.21 0.11 0.22 0.32 0.54 0.31 0.34
SE2 0.48 0.25 0.12 0.22 0.31 0.54 0.34 0.33

* Par | = Parameter seti (i = 1, 2, 3).

Table 2. REML estimates of parameter

(Est), standard errors (SE),z-value (Est/SE).

Par Est SE Est/SE
0 5.55 2.03 2.73
P 0.91 0.14 6.5
A 4.33 0.86 5.05
o, 5.9 1.04 5.68
63 5.66 1.02 5.58
G4 5.66 1.01 5.58
&, 4.62 0.87 5.31
&, 8.39 1.44 5.84
6 8.12 1.37 5.92
& 8.12 1.37 5.92
B -2.22 0.76 -2.93
B 6.22 1.68 3.7
5 10.62 1.9 5.59
B 7.62 1.7 4.49
B 7.31 1.67 4.39
Bs 5.24 1.72 3.05
Bs 5.68 1.73 3.29
w, -0.39 0.9 -0.43
s -0.21 0.89 -0.24
w; 0.23 0.83 0.28

e Par = Parameter

Table 3. REML estimates of parameter
(Est), standard error (SE),z-value (Est/SE).

Par Est SE EstSE
0 0.75 0.37 201
p 0.9 0.04 225
6 1.55 0.23 6.78
6 405 03 13.74
6, 597 0.33 17.94
B 7.01 111 6.29
B, 1.65 0.53 3.1
B 236 0.55 431
B 2.08 0.54 3.82
B, 1.57 0.54 2.93
a 0.62 0.49 -1.27
y -0.03 0.02 -1.52
2 -0.56 0.61 0.92
o 446 1.5 2,97
w, -3.78 0.83 455
oy 241 0.73 3.32
w, -0.66 0.74 -0.9

*ax 1s fixed at zero to achieve identifiability

e 04 is fixed at zero to achieve identifiability
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