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Abstract 
 

We consider a model dependent approach for multi-level modelling that accounts for 

informative probability sampling, and compare it with the use of probability weighting as 

proposed by Pfeffermann et al. (1998a). The new modelling approach consists of first 

extracting the hierarchical model holding for the sample data as a function of the 

corresponding population model and the first and higher level sample selection probabilities, 

and then fitting the resulting sample model using Bayesian methods. An important 

implication of the use of this approach is that the sample selection probabilities feature in the 

analysis as additional outcome values that strengthen the estimators. A simulation experiment 

is carried out in order to study and compare the performance of the two approaches. The 

simulation study indicates that both approaches perform generally equally well in terms of 

point estimation, but the model dependent approach yields confidence (credibility) intervals 

with better coverage properties. A robustness simulation study is performed, which allows to 

assess the impact of misspecification of the models assumed for the sample selection 

probabilities under informative sampling schemes. 
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SUMMARY 

     We consider a model dependent approach for multi-level modelling that accounts for 

informative probability sampling, and compare it with the use of probability weighting as 

proposed by Pfeffermann et al. (1998a). The new modelling approach consists of first 

extracting the hierarchical model holding for the sample data as a function of the 

corresponding population model and the first and higher level sample selection probabilities, 

and then fitting the resulting sample model using Bayesian methods. An important 

implication of the use of this approach is that the sample selection probabilities feature in the 

analysis as additional outcome values that strengthen the estimators. A simulation experiment 

is carried out in order to study and compare the performance of the two approaches. The 

simulation study indicates that both approaches perform generally equally well in terms of 

point estimation, but the model dependent approach yields confidence (credibility) intervals 

with better coverage properties. A robustness simulation study is performed, which allows to 

assess the impact of misspecification of the models assumed for the sample selection 

probabilities under informative sampling schemes.  
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1. INTRODUCTION 

     Multi-level (mixed linear) models are frequently used in the social and medical sciences 

for modelling hierarchically clustered populations. Classical theory underlying the use of 

these models assumes implicitly that either all the clusters at all the levels are represented in 

the sample, or that they are sampled completely at random. This assumption may not hold in 

a typical sample survey where the clusters and/or the final sampling units are often sampled 

with unequal selection probabilities. When the sampling probabilities are related to the values 

of the outcome variable even when conditioning on the model covariates, the sampling 

process becomes informative and the model holding for the sample data is then different from 

the population model. Ignoring the sampling process in such cases may yield biased point 

estimators and distort the analysis.  

     As an example, consider an education study of pupils’ proficiency with schools as the 

second level units and pupils as first level units, and suppose that the schools are sampled 

with probabilities proportional to their sizes. Under this (commonly used) sampling scheme 

the sample of schools will tend to contain mostly large schools, and if the size of the school is 

related to the pupils’ proficiency but the size is not included among the model covariates, the 

schools in the sample will not represent correctly the schools in the population and therefore 

follow a different model. A situation where the size of the school is related to the pupils’ 

proficiency is when the larger schools are mostly located in poor areas with low proficiency. 

     As implicitly suggested by this example, a possible way of handling the problem of 

informative sampling is by including among the model covariates all the design variables that 

define the selection probabilities at the various levels.  However, this paradigm is often not 

practical. First, not all the design variables used for the sample selection may be known or 

accessible to the analyst, or that there may be too many of them, making the fitting and 

validation of such models formidable. Second, by including the design variables among the 

model covariates, the resulting model may no longer be of scientific interest. This is not 

necessarily a problem when the fitting of the model is for prediction purposes, but is clearly 

not acceptable when the purpose of the analysis is to study the structural relationship between 

the outcome variable and covariates of interest.     

          In order to deal with the effects of informative sampling, Pfeffermann et al. (1998a) 

proposed probability-weighting of first and second level units that control the bias of the 

parameter estimators under the randomization (repeated sampling) distribution. The authors 

developed also appropriate variance estimators. The use of this approach is justified based on 
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asymptotic arguments but it was shown to perform well in a simulation study also with 

moderate sample sizes. Nonetheless, the use of the sampling weights (inverse of the sample 

inclusion probabilities) for bias correction has four important limitations:  
 

1- The variances of the weighted estimators are generally larger than the variances of the 

corresponding unweighted estimators.  

2- Inference is restricted primarily to point estimation. Probabilistic statements require 

asymptotic normality assumptions. The exact distribution of weighted point estimators is 

generally unknown. 

3- The use of the sampling weights does not permit in general to condition on the selected 

sample of clusters (second and higher level units), or values of the model covariates.  

4- It is not clear how to predict with this approach second and higher level random effects 

under informative sampling; for example, how to predict the mean school proficiency for 

schools not represented in the sample. Notice that under informative sampling, the schools 

not represented in the sample also form an ‘informative sample’  that behaves differently from 

the schools in the population. We mention in this respect that multi-level models are in 

common use for Small Area Estimation problems, where the prediction of the higher level 

(area) means is the primary objective of the model fitting. 
     

     In this article we consider a model dependent approach for multi-level modelling under 

informative sampling and compare it to the use of probability weighting. The idea behind the 

use of the modelling approach is to first extract the hierarchical model holding for the sample 

data as a function of the corresponding population model and the conditional expectations of 

the first and higher level sample selection probabilities given the observed data and the model 

random effects, and then fit the sample model using Bayesian methods. An important 

implication of the use of this approach is that the sample selection probabilities feature into 

the analysis as additional outcome values that strengthen the estimators. Evidently, if the 

sample model is specified correctly, the use of this approach overcomes the limitations 

underlying the use of probability weighting mentioned above. However, as illustrated and 

discussed later, misspecification of the models assumed for the sample selection probabilities 

may bias some of the model parameter estimators. (A similar problem is shown to underlie 

the use of probability weighting when the sample selection probabilities are unknown, like as 

in nonresponse.)  
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     We consider for convenience a two-level model and apply the full Bayesian paradigm by 

use of Markov Chain Monte Carlo (MCMC) simulations, but the approach can be extended to 

higher level models and different inference procedures. The empirical study is restricted to 

simulated data from known models, which enables us to study the bias of the various 

estimators and the performance of the corresponding confidence (credibility) intervals.   
     

     In Section 2 we define the population model and extract the corresponding sample model 

for a general class of sampling designs underlying the present study. Section 3 outlines the 

probability weighting approach proposed in Pfeffermann et al. (1998a). Section 4 describes 

the simulation experiment designed for studying and comparing the performance of the two 

approaches, and develops the corresponding sample model. Section 5 describes the various 

steps in the application of the MCMC algorithm for fitting the sample model. The results of 

the simulation study are presented and discussed in Section 6. Section 7 presents the results 

of a robustness simulation study carried out for assessing the performance of the two 

approaches when the sampling schemes are informative but the models assumed for the 

sample selection probabilities are misspecified. We conclude in section 8 by summarizing the 

main conclusions from the present study.  

 

2.  POPULATION MODEL, SAMPLING DESIGN AND SAMPLE MODEL 

2.1 Population Model 

     In this article we consider the following two-level hierarchical model:  

 First level:      iijijijiiij MjNxy ...1,),0(~;’| 2
00  �� �VHHEEE                                  (1)                           

 
Second level:      NiNuuz uiiii ...1,),0(~;’ 2

0  � VJE                                                     (2) 

     This model is often referred to in the literature as the random intercept regression model, 

and it contains as unknown hyper-parameters the vectors of coefficients E ,J , and the first 

and second level variances 2�V  and 2
uV . Note that the intercepts are modelled as linear 

functions of known regressor values, iz . In the simulation experiment described in Section 4 

we refer to the outcome ijy  as the test score of pupil j in school i , ijx  defines the sex, age 

and parents’ education of that pupil and iz  consists of two dummy variables defining 
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geographical regions. The second level random effect iu  accounts for the variation of the 

intercept i0E , not explained by the regressors iz .  

 

2.2 Sampling Design 

     We assume a two stage sampling process. In the first stage, Nn �  second level units 

(say, schools) are selected with probabilities )Pr( sii � S  that may be correlated with the 

random effects iu . In the second stage, im  first level units (say, pupils) are sampled from 

second level unit i selected in the first stage with probabilities )|Pr(| sisj iij �� S  that may 

be correlated with the residuals ijH . Notice that the sampling of the first level units may 

correspond to a response process, in which case the probabilities |j iS  define the (unknown) 

response probabilities. As seen below, the case of unknown response probabilities is handled 

under the model dependent approach by modelling the conditional expectation of these 

probabilities given the observed data (see also Section 7). In Section 4 we elaborate on the 

sampling procedures used for the simulation study.  

 
2.3 The Sample model 

     In what follows we denote by ),’,( 2
0 �VEET ii   and ),’( 2

uVJO   the respective first and 

second level parameters of the population model. Following Pfeffermann et al. (1998b), the 

corresponding two-level sample model is,  
 

 
),|(

),|(),,|(
),,|(),|(

|

|

iijijp

iijijpiijijijp
iiijijiijijis xE

xyfxyE
sjxyfxyf TS

TTSTT  �                 (3)              

),|(

),|(),,|(
),,|(),|( 00

00 OS
OEOESOEOE

iip

iipiiip
iiiis zE

zfzE
sizfzf  �                                    (4) 

where si defines the first level sample from second level unit i , s defines the second level 

sample and )(�pf   and  )(�sf  are the population and sample distributions with expectations 

)(�pE  and )(�sE  respectively.   

      The sample model defined by (3) and (4) depends on the population model and the 

(conditional) expectations of the first order sample selection probabilities of first and second 

level units. The expectations featuring in the two equations can be modelled based on 

knowledge of the sampling process and the sample data; see Pfeffermann and Sverchkov 
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(1999, 2003) for discussion and examples. The corresponding expressions under the sampling 

schemes considered for the simulation study of this article are presented in Section 4.  

 
3. PROBABILITY WEIGHTED (DESIGN BASED) APPROACH 

     In this section we describe briefly the weighting procedure developed by Pfeffermann et 

al. (1998a). We restrict for convenience to the population model defined by (1) and (2) that 

contains a single second level random effect i0E . Suppose first that all the population units 

are surveyed and denote by 1( ... ) ’
ipi i iMy y y  and 1( ... ) ’

ipi i iMT t t  the data measured for 

second level unit i  of size iM , where )’’,’( iijij zxt  . Denoting also 1( ... ) ’
ipi i iMe e e , where 

)( iijij ue � H , 22 �VV IJV ui � , where J  and  I define the unit matrix and the identity matrix 

of order iM  respectively and )’,’(’ JEG  , the ‘census model’  defined by (1) and (2) can be 

written alternatively as, 

 

pi pi piy T eG � ;  ~ (0, )pi ie N V , 1...i N , ( ’) 0 for pi pkE e e i k z                                         (5) 

     A commonly used procedure for estimating the vector coefficients G  and the variances 

)’,( 22 �VVM u  is the iterative generalized least squares (IGLS) algorithm, developed by 

Goldstein (1986). The algorithm consists of iterating between the estimation of G  for ‘given’  

M , and the estimation of M  for ‘given’  G , with the ‘given’  values defined by the estimates 

obtained on the previous iteration. The two sets of estimators are the corresponding 

generalized least square estimators (considering the ‘given’  values as ‘true’ ), where the 

observed values of the dependent variable for the estimation of G  are the vectors 

{ , 1... }piy i N , and the ‘observed’  values of the dependent variable for the estimation of M  

on the rth iteration are the elements of the matrices 

( ) ( ) ( )ˆ ˆ ˆ{ ( ) ( )( ) ’, 1... }r r r
i i i i iD y T y T i NG G G � �  , written as a vector. Notice that for known G , 

)(GiD  has expectation iV  and that for normal error terms ),( ijiu H , the variances and 

covariances of the elements of  )(GiD  are known functions of M ; see Anderson (1973) for 

the corresponding expressions. The rth iteration of the IGLS yields therefore the estimators, 

 
( ) ( ) 1 ( )ˆ [ ]r r rQ yG �    ;   ( ) ( ) 1 ( )ˆ [ ]r r rR dM � , ,...2,1 r                                                                  (6) 

with appropriate definitions of the matrices ( ) ( ),r rQ R  and the vectors ( ) ( ),r ry d ; see 

Pfeffermann et al. (1998a) for details. The iterations can be started by estimating G  by 
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ordinary least squares (OLS), so that the estimators )(ˆrM  use the estimators )(̂rG , whereas the 

estimators )(̂rG  use the estimators )1(ˆ �rM , ,...2,1 r Under some regularity conditions the 

IGLS estimators converge to the ‘census’  maximum likelihood estimators (MLE) )ˆ,ˆ( CC MG  as 

for . (The census MLE are the MLE based on all the population data). 
 

     Suppose now that data are available for only a probability sample of second and first level 

units as defined in Section 2.2. The weighting procedure developed by Pfeffermann et al. 

(1998a) consists of writing the matrices ( ) ( ),r rQ R  and the vectors ( ) ( ),r ry d  in iteration r as 

sums over second level units i  and first level units j , and replacing each population sum by 

the corresponding weighted sum of the sample units, with the weights defined by the inverse 

of the respective selection probabilities. Denoting the second level weights by iiw S/1 , 

and the first level weights by ijijw || /1 S , and using the generic notations i�  and ij�  to 

define second and first level expressions respectively, the procedure consists of replacing,  

 ¦ � �N

i i1
l  ¦ 	 �n

i iiw
1

    ;     ¦ 
 �iM

j ij1
l  ¦ � �im

j ijijw
1 |                                                         (7) 

Notice that each second level expression i�  is again a sum of the form ¦ � �iM

j ij1
. It is shown 

in Pfeffermann et al. (1998a) that under standard conditions the estimators PWĜ  and PWM̂  

obtained at the end of the iterations are consistent for the census estimators )ˆ,ˆ( CC MG  under 

the randomization (repeated sampling) distribution, with the latter estimators being consistent 

for ( IG , ) under the model. The consistency of PWM̂  requires that both n and im  tend to 

infinity, but appropriate scaling of the weights ijw |  controls the bias of these estimators for 

small im . A simple scaling method used in the simulation experiment of the present article is 

to replace ijw |  by )//(
1 || i

m

j ijij mww i¦ 
 .  

 
4.  MONTE-CARLO SIMULATION EXPERIMENT 

     The purpose of the simulation experiment is to study the performance of the model 

dependent approach introduced in Section 2.2 (see details below), and compare it with the 

weighting procedure described in Section 3. The sampling design and the explanatory 

variables values underlying this experiment were taken from the ‘Basic Education Evaluation 

study’  carried out in 1996 for the municipality of Rio de Janeiro in Brazil (hereafter the BEE 
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study). The target outcome values in that study were the proficiency scores of M=14,831 

pupils, learning in N=392 schools, located in 3 different regions. In what follows we use 

‘schools’  to define the second level units and ‘pupils’  to define the first level units. The 

simulation experiment consists of generating 400 populations from the model defined by (1) 

and (2) and selecting four samples from each population using four different sampling 

schemes. The various stages of the simulation experiment are described in Sections 4.1 to 4.4. 

 
4.1 Generation of Population Values 

     The population values were generated in 5 steps: 

Step 1 - Generate school random intercept terms from the model (Equation 2), 

iiiiii uzu � ��� JJJJE ’Region2Region1 2100 ;   ),0(~ 2
ui Nu V , 392...1 i , 

independently between schools. The numerical values of the J - coefficients and 2
uV  are 

listed in the tables of Section 6. The variables Region1i  and  Region2i  are dummy variables 

defining three school regions. The number of schools in the three regions is approximately 

the same. 
 

Step 2- Generate school sizes iM  from the lognormal distribution, 

],’[~)log( 2
03 Miii zNM VEDD � , with iz  defined as above and 0 19.25, 0.31D D  , 

2 0.62D  , 045.03 � D  and 050.02  MV . The use of these parameter values yields school 

sizes with a similar distribution to the sizes of the schools in the BEE study.  
 

Step 3 - Set explanatory variables values ijx   for the iM   students in school i   by sampling at 

random with replacement iM  vectors of explanatory variables from the corresponding BEE 

data in the region containing that school.  The explanatory variables are dummy variables 

defining Sex (1 for females), Age1 (1 for age 15-16), Age2 (1 for age 17 and older) and 

Parents education (1 for pupils with at least one parent having an academic degree). 
 

Step 4 - Generate proficiency score for student j  of school i  using the model (Equation 1), 

),0(~;’21 2
043210 �VHHEEHEEEEE NxParentsAgeAgeSexy ijijijiijijijijijiij �� ����� 

 

The numerical values of the E - coefficients and 2�V  are listed in the tables of Section 6. 
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     In order to allow for informative sampling (response) of pupils, we stratified the pupils 

within each school into 3 strata based on propensity scores generated as follows: 
 

Step 5 – Generate propensity scores ),0(~; 2
10

�V]] Nybbp ijijijij ��  where  0b 1.60, 

 1b 0.0056 and  2�V 0.034. Strata membership has been assigned by setting 

11 ( 1) ifij ijO stratum p c � , 1 22 ( 2) ifij ijO stratum c p c d � , 2if)3(3 cpstratumO ijij t ,  

with 1 1.76c   and 16.22  c .  

  
4.2 Sampling Schemes  

    We consider two different methods for the sampling of schools and two different methods 

for the sampling (response) of pupils within the selected schools, defining a total of 4 

different two-stage sampling schemes. Schools were selected using either Method A1- simple 

random sampling without replacement (SRSWOR) or Method A2- probability proportional to 

size (PPS), using Sampford (1967) method. Note that Method A2 is informative since the 

sizes iM  depend on the intercepts i0E  (Step 2). Students within the selected schools were 

sampled either by Method B1- SRSWOR or Method B2- disproportionate stratified sampling 

with the strata defined by the strata membership indicators ijO   (three strata, Step 5). Method 

B2 is informative since the strata indicators are defined based on the propensity scores ijp , 

which depend on the proficiency scores ijy  (Step 5). One sample of 50 schools and 12 pupils 

from each selected school was drawn from each population using each of the 4 sampling 

schemes. For the stratified sample selection (Method B2) we sampled 3 pupils from Stratum 

1, 4 pupils from Stratum 2 and 5 pupils from Stratum 3, yielding mean sample selection 

probabilities (over schools) of about 0.08 in stratum 1, 0.04 in stratum 2 and 0.14 in stratum 

3.  

 
 4.3. Sample models under sampling methods A2 and B2  

    The sample models under general two-stage sampling schemes are defined by (3) and (4). 

The expectation in the numerator of the first level model (Equation 3), under the sampling 

method B2 is,  
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¦   � �3 1| ),,|Pr(),,|Pr(),,|( k iijijij
i
kiijijiiijijijp xykOqxysjxyE TTTS  

                              = )](1[)]()([)( 2312211 ij
i

ijij
i

ij
i yAqyAyAqyAq ����                                      (8) 

where is  denotes as before the sample of pupils in school ,i )|Pr( kOsjq iji
i
k  �  is the 

sampling fraction in stratum k of school i , k=1,2,3 and ( ) Pr( | , , )k ij ij k ij ij iA y p c y x T �  

0 1[( ) / ]k ijc b b y �V ) � � , where )  defines the cumulative normal distribution and 1c  and 2c   

are the cut-off values defining the strata membership (Step 5 in Section 4.1).  

     The expectation in the denominator of (3) is obtained by following similar steps using the 

conditional density |( ijpf ), iijx T . We find, 

 

¦   �3 1| ),|Pr(),|( k iijij
i
kiijijp xkOqxE TTS  

                        = )]}([1{)]}([)]([{)]([ 2312211 ij
i

ijij
i

ij
i yBqyByBqyBq PPPP ���� ,                       (9)  

),|(’)( 0 iijijpijiij xyExy TEEP  �  ; ¸̧
¸
¹
·

¨̈
¨
©
§

�
��) � 

22
1

2

10 )(
),|Pr()]([

�� VV
PTP

b

ybbc
xcpyB ijk

iijkijijk . 

     The expectations featuring in the numerator and the denominator of the second level 

sample model (Equation 4), under the sampling method A2 are,  
 

2
*

0 3 0( | , , ) exp[ ’ ]
2
M

p i i i i iE z C z
VS E O D D E# � �                                                                  (10)              

2 2 2
* 3

3( | , ) exp[ ’ ]
2

u M
p i i i iE z C z z

D V VS O D D J �# � � ,                                                              (11)                                            

using familiar properties of the lognormal distribution used to generate the school sizes and 

the approximation, *i
i i

M
n C M

NM
S  # , where ¦� N

i
iM

N
M

1

1
 is the population mean of the 

school sizes. Notice that the constant *C  cancels out in the numerator and denominator of (4). 

 

5. ESTIMATION OF MODEL PARAMETERS BY 

MARKOV CHAIN MONTE CARLO (MCMC) SIMULATION 

 
     The MCMC algorithm consists of sampling alternately from the conditional posterior 

distribution of each of the unknown parameters, given the data and the remaining parameters. 

We used for the present study the version 1.4 of the WinBUGS program, (Spiegelhalter et al. 

2003), generating 5000 samples from each posterior distribution after discarding the first 
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15000 values as ‘burn in’ . Let { ; 1... , 1... }ij iY y i n j m   , { ; 1... , 1... }ij iO O i n j m    and 

{ ; 1... }iM M i n   denote   respectively   the observed  y -values,   the   corresponding strata                                

membership indicators and  the school sizes in the sample. The observed data consist 

therefore of the triple obsD = ),,( MOY .  

     In what follows we use the transformations 0 3 1( ) / , 1,2, ( / )k kc b k b� �K V K V �   � , 

such that the probabilities )( ijk yA  and )]([ ijk yB P  in (8) and (9) can be written as, 

)()( 3 ijkijk yyA KK �)  and ¸̧¹
·

¨̈©
§

�
�) 

22
3

3

1

)(
)]([

�VK
PKKP ijk

ijk

y
yB . Notice that the K -coefficients 

are considered as unknown parameters in the estimation process, implying that the cut-off 

values kc , the variance 2�V  and the b -coefficients used to define the sampling strata in Step 

5 are also considered as unknown. 

     The joint distribution of the observations obsD , the parameters ),,,( 22
0 �VVEE ui  indexing 

the population model and the additional parameters ),,( 2
MVDK  indexing the sample model 

can be written as, 

),,,,,},{,( 222
0 Muiobss Df VVVDKEE �  

 

),,,|(),|(Pr),,,,|( 2
0

1 1

2
0 uiis

n

i

n

j
ijijsiijijs zfyOxyf VDJEKVKEE ��� ���  

)().().().().().().().,,,|( 2222
0 MuMiiis pppppppzMf VVVDKJEVDE  u                                    (12)  

 

where  3

1

Pr( | , )
Pr ( | , ) Pr( | , , ) , 1,2,3

Pr( | , )

ki ij ij
s ij ij ij ij i

ki ij ij
l

q O k y
O k y O k y j s k

q O l y

KK K
K

!

    �   
 ¦ . 

 

     The sample distribution ),,,,|( 2
0 "VKEE iijijs xyf  is defined by (3), with the expectations 

appearing in the numerator and the denominator defined by (8) and (9) as functions of the 

unknown K-coefficients defined above. The sample distribution ),,,|( 2
0 uiis zf VDJE  is 

defined by (4), with the expectations appearing in the numerator and the denominator defined 

by (10) and (11). Here again, the D -coefficients and the variance 2
MV  are additional unknown 

parameters. The probabilities Pr( | , , )ij ij ij iO k y x T  are defined in (8), and after the 

transformation of the probabilities )( ijk yA  defined above, they take the simple form, 
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)(),|1Pr( 1 ijijij yAyO   K , )()(),|2Pr( 12 ijijijij yAyAyO �  K , 

)(1),|3Pr( 2 ijijij yAyO �  K                                                                                                (13) 

      

     The sample distribution of the school sizes is obtained similarly to (4) as, 

),,,|(

),,,|(),,,,|(
),,,|(

2
0

2
0

2
02

0
Miiip

MiiipMiiiip
Miiis zE

zMfzME
zMf VDES

VDEVDESVDE  .                       (14) 

By Pfeffermann et al. (1998b), the conditional density in (14) under the sampling method A2 

is lognormal; 
 

)],’[],,,|)[log( 22
03

2
0 MMiiMiiis zNzMf VVEDDVDE �� .                                                 (15) 

Note that the only difference between the population distribution and the sample distribution 

is in this case the addition of the term 2
MV  to the mean. 

     The conditional posterior distributions of the various parameters given the data and the 

remaining parameter values, required for the application of the MCMC simulation, are 

obtained from the joint distribution ),,,,,},{,( 222
Muobss Df VVVDKEE #0i defined in (12). 

Following are the posterior distribution of 0{ }iE  and each of the vector coefficients and 

variances, using the generic notation ‘Rest’  to denote the data and the remaining parameters. 

The notation )(�p  is used to denote the corresponding prior distributions defined below. 

nizfzfxyff
im

j
uiisMiisiijijsi ...1,),,,|(),,,|(),,,,|()Rest|(

1

2
0

2
0

2
00  v�$ VDJEVDEVKEEE % iM (16a) 

��&'&v n

i

m

j
iijijs

i

pxyff
1 1

2
0 )(),,,,|()Rest|( EVKEEE (                                                            (16b) 

�)v n

i
uiis pzff

1

2
0 )(),,,|()Rest|( JVDJEJ                                                                           (16c) 

�*v n

i
Miis pzff

1

2
0 )(),,,|()Rest|( DVDED iM                                                                       (16d)                 

��+'+v n

i

m

j
ijijsiijijs

i

pyOxyff
1 1

2
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     The prior distributions used in the present study are,   

]10, 6
4, 0[)( Np E , ]10, 6

3, 0[)( Np J , ]10, 3
4, 0[)( Np D , ]10, 3

3, 0[)( Np K  

)10,0()( 3Up  1V , )10,0()( Up M  V , )10,1()( 3Up u  V ;                                                (17) 

 

where ),( baU  defines the Uniform distribution with parameters a  and b . As can be seen, all 

the prior distributions are very ‘flat’ . See the Comment at the end of this section regarding the 

choice of the prior distribution for 2
uV . 

 

6. SIMULATION RESULTS 

 
     The results of the simulation study are summarized in Tables 1-3. They are based on 500 

replications, each consisting of generating a new population and selecting one sample of 50 

schools and 12 pupils from each selected school by each of the four sampling methods 

described in Section 4.2. Table 1 shows the results obtained when ignoring the sample 

selection schemes and fitting the population model. These results serve as benchmarks for 

assessing the performance of the two approaches considered in this article for dealing with 

the effects of informative sampling. The p-values (P-V) in the table refer to the conventional      

t-tests of bias, with the standard deviation (SD) of the mean estimates computed as (1/ 500 ) 

times the empirical SD of the estimates over the 500 replications. The parameter estimates in 

a given replication are the empirical means of 5000 observations drawn from the posterior 

distribution of each of the parameters under the population model (ignoring the sample 

selection schemes), after discarding the first 15000 values as ‘burn in’ .  

 
Insert Table 1 about here 

     The results in Table 1 illustrate the kind of biases that can be encountered when ignoring 

an informative sample selection scheme. In the present experiment, informative sampling 

(response) of pupils within the schools (Method B2) has a much stronger biasing effect than 

informative selection of schools (Method A2). In particular, very large relative biases are 

obtained for the estimators of the ’ between schools’  variance, 2
uV , and the two ‘region 

coefficients’  1J  and 2J . The p-values for the significance of the bias show that all the 

estimators are biased under informative sampling (response) of pupils (Method B2). 

Statistically significant biases are obtained also for the estimators of the intercept 0J  and the 
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variances 2 2andu 2V V  under non-informative sampling (response) of pupils but informative 

selection of schools, but as mentioned above, the biases are much smaller in this case. When 

both the selection of schools and the sampling (response) of pupils are noninformative, all the 

percent relative biases are very small and nonsignificant, except for the estimator of 2
uV . We 

discuss the problem with the estimation of 2
uV  in the comment at the end of this section. 

     Table 2 shows the percent relative biases obtained under the two approaches that account 

for the sample selection and discussed in Sections 3 (probability weighting), and in Section 4 

(use of the sample model). For the case of noninformative selection of schools (Method A1) 

and the use of the sample model, we show the results obtained when including among the 

model equations the equation defining the population distribution of the school sizes (Step2, 

Section 4.1), and also the results obtained without that equation. We refer to the first model 

as the ‘full’  sample model (FSM) and to the second model as simply the sample model (SM). 

Notice in this respect that the school selection probabilities, iS , are proportional to the school 

sizes iM , with the latter providing additional information on the random intercepts 0iE , and 

hence on the vector coefficient J  and the variance 2
uV  indexing the distribution of the 

intercepts, irrespective of the sampling scheme used to select the schools. This additional 

information is ‘automatically’  accounted for in the case of informative selection of schools 

(method A2) via the corresponding sample model (Equation 16a).  

 
Insert Table 2 about here  

     The biases in Table 2 are seen to be generally much smaller than the biases in Table 1, 

particularly under Method B2, but large (and statistically significant) biases still persist in the 

estimation of 2
uV  under both methods. However, the biases are in this case much smaller 

when using the sample model compared to the use of probability weighting. All the other 

biases are in most cases statistically insignificant (the p-values are not shown in the table), 

except for the biases in the estimation of 23V  and oJ  that are occasionally significant. The 

latter biases, however, are small. As expected, the use of the full sample model (FSM) that 

includes the model holding for the school sizes reduces some of the biases obtained under 

non-informative selection of schools with the use of the sample model (SM) that ignores this 

relationship, particularly in the estimation of 2
uV . 
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     Table 3 shows the empirical percentage coverage of nominal 95% confidence (credibility) 

intervals (C.I.) for the model parameters, as obtained by ignoring the sampling process (IG) 

and by use of probability weighting (PW) and the sample models. The PW C.I. are the 

conventional C.I. obtained by approximating the distribution of the point estimators by the 

normal distribution. The randomization variances have been estimated using the sandwich-

estimators developed in Pfeffermann et al. (1998a).  When using the sample models or when 

ignoring the sampling process (assuming the population model), the C.I. have been 

constructed based on the 2.5% and 97.5% quantiles of the corresponding empirical posterior 

distributions. 
 

Insert Table 3 about here 

    As becomes evident from Table 3, the use of either PW or the sample model yields in 

general acceptable coverage percentages, except in the case of the ‘between schools’  

variance, 2
uV , where the PW C.I. perform badly under all 4 sampling schemes. The sample 

models C.I.’ s for 2
uV  on the other hand perform generally well, despite the relatively large 

biases of the corresponding point estimators (see Table 2). The use of the sample model 

outperforms PW also under informative selection of schools and noninformative sampling 

(response) of pupils. The bad performance of the PW C.I. in the case of 2
uV  suggests that the 

use of the conventional confidence intervals for this parameter is not justified with the sample 

sizes considered in this study. (See also the comment below). Ignoring the informative 

sampling schemes is seen to deteriorate the performance of the corresponding C.I. very 

severely under informative sampling (response) of pupils (Method B2). An unexpected result 

for which we don’ t have a clear explanation is that under informative sampling of pupils, the 

use of the sample model without the equation for the school sizes yields better C.I. for the   

J -coefficients than the use of the full sample model. Notice, however, that the full sample 

model C.I. for 2
uV  performs somewhat better than the sample model C.I., which is consistent 

with the results of Table 2 regarding the biases of the corresponding point estimators. We 

computed also for each of the methods the means and standard deviations of the lengths of 

the C.I. over the 500 replications (not shown), and none of the approaches dominates the 

other in this regard. 
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Comment: We mentioned above the large biases in the estimation of 2
uV  with the use 

probability weighting under all four sampling schemes, and to a lesser extent with the use of 

the sample models via the posterior mean. The first point to be made in this respect is that 

unlike the estimation of the ‘within school’  variance 24V , that uses all the 1250u  individual 

(pupils) observations, the ‘effective’  sample size for the estimation of 2
uV  is 50, the number 

of selected schools (see below for the effect of increasing the number of selected schools).  

     As regards the use of the sample model, another interesting (but seemingly not new) 

phenomenon encountered in our study is that the bias in estimating 2
uV  depends also on the 

choice of the corresponding ‘noninformative prior’  distribution. In this article we followed 

the recommendation made in Gelman (2004) and used a noninformative Uniform prior 

distribution for the standard deviation uV  (and the two other standard deviations), see 

Equation (17). (The use of WinBUGS requires setting a finite upper bound for the uniform 

distribution. We set the upper bound in the case of MV  to be 10, since 2
MV  is the variance of 

the log of the school sizes.) As discussed in Gelman (2004), the use of this prior with more 

than 2 second level units (schools) guarantees a proper posterior density, and it has other 

desirable properties. (Gelman considers a simple special case of the population model defined 

by (1) and (2), but points out that similar arguments in favour of the use of a uniform prior 

distribution for uV apply under more complicated models.).  

     Browne and Draper (2001) likewise noticed the strong dependency of the behaviour of the 

posterior mean of 2
uV  on the choice of the prior distribution under a two-level model that is 

similar to the population model defined by (1) and (2). (In that paper the authors compare 

Bayesian and likelihood-based inference methods but they do not consider informative 

sampling). The authors found that the bias largely disappears when using a noninformative 

Inverse Gamma prior for 2
uV  and estimating the variance by the posterior median, and that 

similar bias reductions are obtained when using a non-informative Uniform prior for 2
uV  and 

estimating the variance by the posterior mode. They conclude that there is a clear trade-off 

between the choice of the prior distribution and the choice of the point estimator of this 

variance.  

     Another reason for the problems in estimating 2
uV  in our case is the large ratio 

2 2( / ) 7.3u5V V   between the two variances. In a simulation study with a very simple multi-

level model, Kovacevic and Rai (2003) found that “the larger this ratio”, the larger is the 
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relative bias of the estimator of 2
uV , which seems very reasonable. Evidently, the effect of the 

magnitude of  this ratio depends on the sample sizes of the first and second level units.  

     In order to study the effect of the number of schools on the behaviour of the estimators of 
2
uV , we repeated the runs for the case of noninformative sampling schemes at both levels 

(Methods A1 and B1), increasing the number of selected schools from 50 to 80. The percent 

relative biases obtained in this case are -7.1% under PW, 3.7% under the sample model and 

2.2% under the full sample model. The corresponding biases for the case of 50 schools are 

(Table 2), -10.6%, 6.8% and 4.3% respectively.  

 

7. ROBUSTNESS SIMULATION STUDY 

     The purpose of the analysis in this section is to study the robustness of the two approaches 

to possible misspecification of the models assumed for the sample selection probabilities 

under informative sampling schemes. To this end we changed the first and second level 

selection probabilities and then repeated the simulation study, assuming the original sample 

models defined by (8)-(11). Specifically, we generated the school sizes from a truncated non-

central t-distribution with 3 degrees of freedom instead of the lognormal distribution defined 

in Step 2 of Section 4.1, and sampled the pupils within the selected schools with probabilities 

proportional to a size variable (PPS), instead of the stratified sampling scheme B2 defined in 

Section 4.2. 
      

     The model used for generating the school sizes is,    

),2Re1Re(~ 2
03210)3( Miiii giongiontM VEOOOO ���                                                      (18)  

with 9.2839,0.3052,1.3258 210    OOO , 3.303 � O  and 12252
*  M

V . School sizes 

smaller than 50 were set as 50 and sizes larger than 1200 were set as 1200, such that the 

range of the sizes is similar to the range in the simulation study of Section 6. Figure 1 shows 

the histogram of the actual sample of the school sizes under the sampling scheme A2 when 

the school sizes are generated by the t-distribution in (18). Figure 2 shows the histogram of 

the predicted sizes under the misspecified lognormal distribution assumed for the sample 

school sizes (Equation 15; the sizes in both figures are in the log scale). As becomes evident, 

the two distributions are very different, implying a bad fit of the misspecified model to the 

actual sizes. 
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     Pupils within the selected schools were sampled with probabilities proportional to size, 

with the size defined as exp( )ij ijs p  where the ijp ’ s are the propensity scores defined under  

Step 5 in Section  4.1. Here again we can compare the actual sample selection probabilities 

with the misspecified selection probabilities obtained by assuming the stratified sampling 

scheme B2. The averages of the actual selection probabilities in the three strata (over the 

sampled clusters in 50 samples) are, 0.036, 0.047 and 0.055 respectively. Assuming the 

stratified sampling scheme B2, the 3 averages are 0.016, 0.018 and 0.025 respectively. It 

follows that the actual selection probabilities are much more variable than the probabilities 

assumed under the model. 

     The application of the robustness study in the case of probability weighting requires an 

explanation. As described in Section 3, the only information needed for the use of probability 

weighting are the first and second level selection probabilities, so that the performance of this 

approach does not depend on the models assumed for these probabilities. However, when the 

selection probabilities of the pupils within the schools are unknown, like in the case of 

nonresponse, these probabilities need to be estimated from the sample data. The present 

experiment allows therefore studying the effect of wrongly estimating these probabilities. 

(Assuming equal response probabilities within ‘imputation classes’  defined by the three 

strata, whereas the true response probabilities are proportional to the sizes ijs .) For the 

selection of schools, we used the correct inclusion probabilities ( i iMS % ) with the ’iM s  

generated by (18).  
      

     The results of the robustness study are exhibited in tables 4 and 5, which are analogous to 

Tables 2 and 3. Notice that the noninformative sampling schemes (Methods A1 and B1) were 

assumed to be known, so that the models assumed for the sampling probabilities in these 

cases are correct. The present robustness study is restricted therefore to situations where an 

informative sampling scheme at either level is misspecified.  

 
Insert Tables 4 and 5 about here 

     The conclusions emerging from this study can be summarized as follows:   

Misspecification of the models assumed for the sampling probabilities has no biasing effect 

on the estimation of the coefficients 1 4...E E  and the variance 26V , indexing the first level 

model. Similarly, the confidence intervals computed for these parameters (Table 5) perform 

generally well under both approaches. In fact, the confidence intervals computed for these 
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parameters under the assumption of ignorable sampling schemes also perform very well, and 

the percent relative biases of the corresponding point estimators (not shown) are in all the 

cases less than 3.2%. This outcome is very different from the results obtained under the 

selection schemes underlying the results in Table 1, where large biases were obtained when 

ignoring sample selection within the schools.   

     The results of the robustness simulation study are generally satisfactory also with respect 

to the estimation of the second level model coefficients. Except for the case of informative 

sampling of schools (Method A2) and informative sampling of pupils (Method B2) where the 

estimator of 2J  has bias of about 8% under probability weighting, the biases of the estimators 

of 0J  and 2J  are in all the other cases less than 4.5%.  The biases of the estimators of 1J  are 

somewhat larger, but not much larger than the biases obtained under noninformative 

sampling of schools and pupils (Methods A1 and B1). The confidence intervals computed 

under the two approaches perform similarly in the case of 0J , with undercoverage of up to 11 

percentage points compared to the 95% nominal level, but ignoring the sample selection 

schemes in this case results in more severe undercoverage. The use of probability weighting 

yields confidence intervals for 1 2andJ J  with undercoverage of up to 7 percentage points, 

but the use of the sample models credibility intervals yields undercoverage of at most 2.5 

percentage points under all four sampling schemes.  

     The two approaches are not robust with regard to the estimation of 2
uV  under the model 

misspecifications considered in the present study. Although the estimation of this variance is 

already problematic under correct model specification and even under noninformative 

sampling schemes (see the discussion in the comment at the end of Section 6), the biases 

under the misspecified models are even larger, particularly under informative selection of the 

schools when using the sample model, and under informative sampling of pupils (but 

noninformative sampling of schools), when applying the probability weighting approach. The 

percent undercoverage of the confidence intervals for 2
uV  are likewise higher in the case of 

the misspecified model, particularly with the use of probability weighting under informative 

selection of schools. Recalling that in the application of probability weighting we used the 

correct school selection probabilities, the empirical coverage of 71.% in the case of 

informative selection of schools (Method A2) and noninformative sampling of pupils 

(Method B1) seems odd, but notice that a severe undercoverage was already observed for the 

same sampling schemes in Table 3 (78.6% coverage). As in the case of the J -coefficients, 
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the credibility intervals for 2
uV  computed by use of the sample models perform generally 

better than the probability weighted confidence intervals, but an undercoverage of 14 

percentage points is observed for the case where both sampling schemes are informative. 
      

     In summary, both probability weighting and the use of the sample model seem to be 

equally robust with regard to point estimation of the model coefficients, but the use of the 

sample models yields confidence (credibility) intervals with somewhat better coverage 

properties even under the misspecified models for the sample selection probabilities. The two  

approaches fail to yield reliable point estimators and confidence intervals for 2
uV , but as 

mentioned before, the estimation of this variance is known to be problematic even under the 

classical (population) multi-level model with no sampling effects.  

      

8. FURTHER REMARKS AND CONCLUSIONS  

      An important message reinforced in the present study is that ignoring an informative 

sample selection scheme and fitting the population model may yield large biases of point 

estimators that distort the analysis. We describe and compare two approaches to control the 

bias. The first approach uses probability weighting to obtain approximately unbiased and 

consistent estimators for the corresponding census estimators under the randomization 

(repeated sampling) distribution. The census estimators are the hypothetical estimators 

computed from all the population values, and with large populations they can be expected to 

be sufficiently close to the true model parameters. The second approach attempts to identify 

the parametric model holding for the sample data as a function of the population model and 

the first order sample selection probabilities, and then fits the sample model to the sample 

data. The two approaches have been shown in the simulation experiment to remove the bias 

of all the point estimators except in the case of the ‘between school’  variance 2
uV , where with 

a small number of schools the use of probability weighting produces large biases under all the 

sampling schemes considered, including the non-informative scheme where both the 

selection of schools and the sampling of pupils within the selected schools is by simple 

random sampling. The use of the sample model likewise produces biased estimators for this 

variance with a small number of schools, and as discussed in Section 6, the bias depends also 

in this case on the choice of the corresponding prior distribution. 

     Probability weighting has two important advantages over the use of the sample model. 

First and foremost, it does not require any additional assumptions beyond the specification of 
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the population model, although the validation of the model under this approach is an open 

problem. The second advantage of this approach is that it is very simple and requires minimal 

computation resources, including the estimation of the variances of the point estimators. The 

use of this approach has, however, some serious limitations already discussed in the 

introduction. In particular, it requires large sample normality assumptions for the 

computation of confidence intervals.  

     The use of the sample model is more flexible and with the specification of appropriate 

prior distributions, it allows simulating from the posterior distribution of the target 

parameters. This advantage of the use of the sample model is demonstrated in Tables 3 and 5 

where we compare the percentage coverage of confidence intervals produced by the two 

approaches. Inference based on the sample model requires, however, the specification of the 

conditional expectations of the sample selection probabilities at the various levels of the 

model hierarchy, given the values of the corresponding dependent and independent variables. 

As illustrated in the present study, these expectations may depend on a large number of 

unknown parameters that need to be estimated along with the population parameters. 

Application of this approach with the aid of MCMC simulations is computation intensive and 

as discussed in Section 6, with a small number of second level units, the performance of the 

variance estimators is rather erratic and may depend on the specification of the prior 

distributions, even when restricting to ‘non-informative’  priors. Nonetheless, with ‘correct’  

specification of the sample model the use of this approach overcomes the inference 

limitations of probability weighting noted in the introduction.  

                The robustness study carried out in this article suggests that even quite drastic 

misspecification of the models assumed for the sample selection probabilities may only have 

a modest effect on the estimation of the model coefficients and the performance of the 

corresponding confidence intervals, but large biasing effects are observed when estimating 

the ‘between school’  variance 2
uV . With a small number of second level units, the estimation 

of this variance is known to be problematic even under the standard multi-level model with 

no biasing sampling effects, but the biases obtained under the misspecified model indicate the 

need for powerful diagnostic procedures for the identification of the models underlying the 

sample selection schemes. As discussed in the Introduction, the use of the sample model is 

inevitable under informative selection of the second level units, when the objective of the 

analysis is the prediction of characteristics of these units, like in small area estimation 

problems. 
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Table 1. Percent relative bias (PRB) and p-values (P-V) of tests of bias when ignoring the 
sampling  process. 
 

 

Selection of Schools  

Non Informative, Method A1 Informative, Method A2 

Selection of 
Students 

Non Informative 
Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PRB P-V PRB P-V PRB P-V PRB P-V 

       J0=   86.9    0.5    3.1   9.2 0.0 -7.0   0.0     4.1 0.0 

       J1=   -6.8  -4.1 22.2 27.3 0.0   0.9 79.0   27.1 0.0 

       J2= -13.8  -3.4   4.1 36.5 0.0 -0.7 67.6   37.2 0.0 

       E1= -10.9 -1.6 15.2  -13.7 0.0   0.7 52.8 -12.5 0.0 

       E2= -16.0  0.2 76.3  -13.9 0.0   0.9 27.3 -12.2 0.0 

       E3= -36.5   0.3 51.2  -16.1 0.0   0.3 57.0 -15.9 0.0 

       E4=  -7.2 -1.0 57.8  -15.8 0.0 -0.1 93.8 -14.4 0.0 

       
2
uV =132.2  6.8  0.0  -80.9 0.0  6.6   0.0 -79.9 0.0 

      
27V =963.0  0.4    11.2   18.9 0.0  1.0   0.0  20.1 0.0 
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Table 2. Percent relative bias (PRB) when accounting for the sampling process by use of 
probability weighting (PW), the sample model (SM), and the full sample model (FSM). 
 

 

Selection of Schools   

Non Informative, Method A1 Informative, Method A2 

Selection of 
Students  

Non Informative 
         Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PW SM FSM PW SM FSM PW SM PW SM 

      J0=   86.9   0.5    0.5    0.2   1.0   1.2 0.6   -1.2 -0.3  -0.3   0.2 

J1=   -6.8 -4.1  -4.1 -4.2 -0.4  -1.0 -1.4    4.7 -0.3   1.9 -3.0 

J2= -13.8 -3.5  -3.4 -3.1 -1.3  -1.7 -2.7   -0.5 -1.5  -0.9 -1.4 

E1= -10.9 -1.5 -1.6 -0.3 -2.3  -2.1 -0.3    2.3  1.9  -1.1  0.2 

E2= -16.0   0.4  0.2  1.1 -2.5  -2.3 -0.9    1.4  1.6  -0.6  0.6 

E3=-36.5  0.4  0.3  0.6 -2.7  -2.3 -0.7    0.7  0.5  -2.0  0.0 

E4= -7.2 -0.8 -1.0 0.4 -3.4  -3.3 -1.3    -0.5  1.4  -4.3 -0.2 

2
uV =132.2  -10.6  6.8 4.3 -20.0  -14.7  -8.1 -15.1  4.8 -21.5 -6.5 

28V =963.0 -1.0 0.4 0.4 -0.2   -0.7  0.0   -0.6  0.9    0.1  0.8 
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Table 3. Percent coverage of nominal 95% confidence intervals when ignoring the sampling 
process (IG), under probability weighting (PW), the sample model (SM) and the full sample 
model (FSM). 
 

 

Selection of Schools  

Non Informative, Method A1 Informative, Method A2 

Selection of 
Students 

Non Informative 
Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PW SM 

=IG 

FSM 

=IG 

IG PW SM FSM IG PW SM IG PW SM 

J0=   86.9 92.8 93.8 92.6 41.4 91.6 93.0 89.4 71.2 89.4 92.8 83.2 92.0 89.8 

 J1=  -6.8 95.2 96.2 95.0 91.2 94.4 95.2 91.2 94.6 91.2 94.6 93.0 90.0 92.0 

J2= -13.8 94.0 94.8 93.6 74.0 94.2 95.2 94.2 94.2 90.8 93.6 72.8 91.0 91.2 

E1= -10.9 95.2 95.2 94.6 89.8 92.8 92.2 90.8 93.8 92.2 93.6 92.6 94.0 94.2 

E2= -16.0 95.4 96.2 95.6 91.0 95.4 96.0 93.6 95.8 92.0 95.4 91.6 95.8 94.6 

E3= -36.5 93.4 94.4 94.2 73.8 96.0 93.6 93.6 95.4 95.2 95.2 76.8 92.6 94.4 

E4=  -7.2 93.6 95.0 95.4 95.8 96.6 95.6 95.4 95.2 91.4 96.0 91.2 92.0 92.0 

2
uV =132.2 87.8 94.8 95.0  8.6 79.2 92.4 94.2 94.8 78.6 94.8   9.4 72.0 92.2 

29V =963.0 94.0 94.8 94.8 16.6 94.0 95.4 95.8 96.6 93.8 97.2 12.2 93.4 97.0 
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Table 4. Percent relative bias (PRB) when accounting for the sampling process by use of 
probability weighting (PW), the sample model (SM), and the full sample model (FSM);  
Robustness study. 

 

Selection of Schools   

Non Informative, Method A1 Informative, Method A2 

Selection of 
Students  

Non Informative 
Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PW SM FSM PW SM FSM PW SM PW SM 

J0=   86.9  0.0  0.0 -0.3   4.2  4.0   3.6   -0.4 -1.1     3.3 -2.6 

J1=   -6.8  4.6  4.9  3.8 -1.4  2.0   3.8   -4.5 -5.9   -5.3  0.0 

J2= -13.8  1.1  1.2 1.3 -4.5  1.0   0.7   -2.6 -3.5   -8.2  -2.2 

E1= -10.9   -1.0 -1.0 0.1 -1.3    -3.6 -2.4    0.9   2.1  -1.3 -1.4 

E2= -16.0   -0.1   -0.3 0.7  0.6    -1.0   0.5  -1.6 -0.4  -0.3 -0.5 

E3= -36.5     0.2   0.1 0.4  0.4    -1.6  -0.4  -1.1 -0.5   0.3 -0.1 

E4=  -7.2   -0.2 -0.3 0.2  1.9  0.2   2.0  -2.8 -0.9  3.3   3.5 

2
uV =132.2 -10.8  6.6 4.1 -9.1  -15.4 -8.7 -18.7 15.1 -22.0  -29.1 

28V =963.0   -0.7  0.7 0.7 -1.5  4.3  2.6  -1.0 -0.5 -1.5  2.2 
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Table 5. Percent coverage of nominal 95% confidence intervals when ignoring the sampling 
process (IG), under probability weighting (PW), the sample model (SM) and the full sample 
model (FSM); Robustness study. 

 

Selection of Schools  

Non Informative, Method A1 Informative, Method A2 

Selection of 
Students 

Non Informative 
Method B1 

Informative 
Method B2 

Non Informative 
Method B1 

Informative 
Method B2 

Parameter PW SM 

= IG 

FSM 

=IG 

IG PW SM FSM IG PW SM IG PW SM 

J0=   86.9 94.2 95.0 93.2 79.2 86.4 85.8 83.6 77.0 89.2 91.4 94.8 87.0 87.8 

J1=   -6.8 94.2 96.0 94.8 95.6 94.6 95.0 92.4 94.6 90.2 92.8 95.4 89.4 93.4 

J2= -13.8 92.0 93.2 92.2 95.6 95.0 94.8 93.4 95.4 88.8 94.4 96.2 88.0 93.2 

E1= -10.9 93.8 94.6 94.8 94.6 93.4 95.2 94.4 96.2 93.4 95.4 94.4 93.4 93.6 

E2= -16.0 94.2 95.4 95.8 93.8 92.2 94.0 91.0 94.2 93.6 94.6 94.8 93.2 93.6 

E3= -36.5 95.2 95.6 96.0 95.8 94.2 94.8 95.8 95.8 94.8 96.0 93.8 91.2 93.0 

E4=  -7.2 94.8 95.6 95.8 95.8 95.4 95.0 94.8 94.8 92.8 93.6 95.0 92.8 94.4 

2
uV =132.2 84.4 93.8 93.4 94.8 87.2 90.0 92.8 90.4 71.4 87.8 89.0 67.2 81.2 

28V =963.0 93.8 94.8 94.4 94.6 91.6 91.0 93.0 94.8 91.8 94.8 95.4 91.4 95.4 

 



 28 

Figure 1. Histogram of actual sample of school sizes when the population school sizes are 
generated from the truncated  t-distribution. Sampling scheme A2 

 

 
 

Figure 2. Histogram of predicted sample of school sizes under lognormal assumption when 
the population school sizes are generated from the t-distribution. Sampling scheme A2  

 

 


