ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes
ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromsø and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.
Ionosphere (ionosphere - magnetosphere interactions, auroral ionosphere, plasma temperature and density)
1009-1026
McCrae, I.W.
607f4f72-016a-4279-918c-9cf253c5c079
Lockwood, M.
32917473-f7d9-4773-9162-6509baad09fa
Moen, J.
53a863f6-c34d-46c1-9e13-89b8205cc414
Aylward, A.D.
f70edeaf-8a8d-4e24-b8c0-b0244d219b2a
Cerisier, J.-C.
06662b91-63bc-44d6-8406-4a9d99c5cb64
Thorolfsson, A.
ff04c34d-b2f9-4db6-9055-f62eba097112
Milan, S.E.
4495fdee-b600-43e5-99f7-6193a849b7f5
2000
McCrae, I.W.
607f4f72-016a-4279-918c-9cf253c5c079
Lockwood, M.
32917473-f7d9-4773-9162-6509baad09fa
Moen, J.
53a863f6-c34d-46c1-9e13-89b8205cc414
Aylward, A.D.
f70edeaf-8a8d-4e24-b8c0-b0244d219b2a
Cerisier, J.-C.
06662b91-63bc-44d6-8406-4a9d99c5cb64
Thorolfsson, A.
ff04c34d-b2f9-4db6-9055-f62eba097112
Milan, S.E.
4495fdee-b600-43e5-99f7-6193a849b7f5
McCrae, I.W., Lockwood, M., Moen, J., Aylward, A.D., Cerisier, J.-C., Thorolfsson, A. and Milan, S.E.
(2000)
ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes.
Annales Geophysicae, 18, .
Abstract
We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromsø and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Ålesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work.
This record has no associated files available for download.
More information
Published date: 2000
Keywords:
Ionosphere (ionosphere - magnetosphere interactions, auroral ionosphere, plasma temperature and density)
Identifiers
Local EPrints ID: 9176
URI: http://eprints.soton.ac.uk/id/eprint/9176
ISSN: 0992-7689
PURE UUID: 80ba0788-f816-4d27-bce7-235117add9d8
Catalogue record
Date deposited: 24 Sep 2004
Last modified: 08 Jan 2022 06:42
Export record
Contributors
Author:
I.W. McCrae
Author:
M. Lockwood
Author:
J. Moen
Author:
A.D. Aylward
Author:
J.-C. Cerisier
Author:
A. Thorolfsson
Author:
S.E. Milan
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics