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1. Introduction 

Hourly pay can be a difficult variable to measure in household surveys. In the UK Labour Force 

Survey (LFS) this variable is measured in two ways. First, values of the variable are derived from 

responses to questions about earnings and hours worked. Second, employees who report that 

they are paid by the hour are asked directly about their hourly rate of pay.  We refer to the two 

variables as the derived variable and the direct variable. The characteristics of these variables are 

discussed in Skinner, Stuttard, Beissel-Durrant and Jenkins (2002). In summary, the derived 

variable appears to be subject to measurement error, substantial enough to lead to serious bias in 

the estimation of the distribution of hourly pay, but is subject to almost no item nonresponse; 

the direct variable is much more accurately measured, but is missing for 50-60% of employees. 

The problem is how best to use the data on both variables to estimate the distribution of hourly 

pay. As in Skinner et al. (2002), we shall assume here that the direct variable is subject to no 

measurement error so the key issue is the nonresponse on the direct variable. 

The problem may be formulated as the following general missing data problem. Let iy  be a 

variable of interest, recorded only for a subset of units i  in a sample. Let ir  be the binary 

variable indicating whether iy  is observed ( 1ir = ) or not ( 0ir = ).  Let ix  be a variable, which 

measures iy  with error, but is observed for all units in the sample. The problem is how to use 

these data to make inference about aspects of the distribution of iy  in the population. A critical 

issue is the nature of any assumptions about the missing data mechanism. A standard 

assumption is that the data are missing at random (MAR), given the values also of additional 

(completely) observed variables in a vector iw  (Little and Rubin, 2002). This is the assumption 

underlying methods developed by Skinner et al. (2002) and used by the UK Office for National 

Statistics for estimating the distribution of hourly pay from the LFS. If we view ( , , , )i i i iy x w r  as a 

random vector then the MAR assumption is that ir  is conditionally independent of iy  given 

( , )i ix w .  
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If we emphasise the measurement error nature of the problem, however, there is an alternative 

‘natural’ assumption. The variable ix  is said to be a surrogate for iy  if the measurement error is 

non-differential, that is if ix  is conditionally independent of ( , )i ir w  given iy  (Carroll, Ruppert and 

Stefanski, 1995, p.16), or, in a weaker form, if the conditional distribution of ix  given ( , , )i i iy w r  

does not depend upon ir . Interpreting the conditional distribution of ix  given ( , )i iy w  as the 

measurement error model, we refer to this assumption as the common measurement error 

(CME) model assumption, since it implies the measurement error models for respondents and 

nonrespondents are the same. Note that, under the CME assumption, nonresponse is generally 

not MAR, since the response ir  may depend on iy , even conditional on ix  and iw .  

In general, it is not possible to use the data to test the validity of the MAR versus the CME 

assumptions. One can consider the relative plausibility of both assumptions. One argument in 

favour of the CME assumption versus the MAR assumption is that it seems more plausible for 

missingness on iy  to depend directly on the value of iy  than on some surrogate measure of iy .  

Nevertheless, like the MAR assumption, the CME assumption is a strong assumption, which 

may well not hold in reality. For example, it is conceivable that the amount of measurement 

error for a person who is paid by the hour (and for whom iy  is observed) will be less than for a 

salaried person for whom iy  is missing. Thus, both assumptions are at best approximations to 

reality. 

The aim of this paper is to develop a method for estimating the distribution of iy  under this 

CME assumption and to compare it with methods based upon the MAR assumption. We treat 

the estimation method developed in this paper as a means of assessing the sensitivity of the 

current method for estimating the distribution of hourly pay to a possible plausible departure 

from the MAR assumption. It may be argued, as in Manning and Dickens (2002), that MAR-

based methods will tend to overestimate numbers of the low paid, if the CME assumption holds, 

as a result of employees with observed iy  values tending to be lower paid than employees with 
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missing iy  values. While the direction of the effect may be anticipated, the magnitude of the 

effect is of some importance for the robustness of MAR-based methods. 

Approaches to distribution function estimation, under the CME assumption, include double 

sampling methods (Luo et al., 1998) and deconvolution methods (Stefanski and Bay, 1996). We 

do not consider these approaches here, because, for the LFS application, it is unreasonable to 

assume that the subsample for which iy  is observed may be treated as a simple random 

subsample or that the measurement error model follows a standard additive form with zero 

mean and constant variance. Another approach would be to discretise the ix  and iy  variables 

and to treat this as a misclassification problem, as in Selén (1986). Manning and Dickens (2002) 

have explored this approach to obtain some estimated upper bounds for low pay proportions, 

but note that this approach may suffer from small numbers of respondents within the discrete 

classes.  

Our approach will be to consider a data augmentation method, which extends the MAR-based 

imputation methods considered in Skinner et al. (2002) and Beissel-Durrant and Skinner (2004). 

Carroll et al. (1995) have proposed similar Gibbs sampling methods to impute the missing values 

of the variable of interest in the presence of a surrogate variable. However, a replicate variable it  

for all ∈i s  is required for their approach. Glynn et al. (1993) discuss the use of multiple 

imputation under nonignorable nonresponse in the presence of follow-up data. However, 

information on the nonrespondents is required on a randomised subset of the sample. The 

problem of finding an adequate imputation method is closely related to the problem of 

parameter estimation of the distribution of the missing values. Kuha (1997) suggests the use of 

imputation to estimate the parameters of a regression model where some of the variables are 

subject to measurement error. Again, the presence of validation data is assumed. Some 

suggestions have been made to use maximum likelihood estimation for the parameters of 
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interest in the presence of nonignorable nonresponse such as in Greenlees et al. (1982) and 

Ibrahim and Lipsitz (1996). 

The paper is structured as follows. In section 2 the estimation problem for the LFS is described. 

In section 3, the data augmentation method is developed for inference under the CME 

assumption. A simulation study is described in section 4, where estimation based on the data 

augmentation procedure is evaluated, both under the model assumptions made by the method 

and under forms of misspecification of the model. In section 5 alternative estimates for the LFS 

are given and compared. Some concluding remarks are made in section 6.  

2. Estimating the Distribution of Hourly Pay in the UK 

Distributions of hourly pay are important for a wide range of social and economic policy issues 

in the UK. In particular, to analyse the effects of the National Minimum Wage (NMW), it is 

crucial to have reliable data about hourly pay, particularly for the bottom end of the pay 

distribution. We use data from the LFS, a large quarterly survey of households. The quarterly 

sample is made up of five subsamples, each of about 12,000 addresses. Each quarter one 

subsample is replaced by a newly selected subsample, designed so that a household remains in 

the sample for five successive quarterly waves of data collection. Information on earnings is 

collected in the first and fifth wave, resulting in approximately 16,000 employees each quarter. 

We consider two LFS measures of hourly pay. The derived variable, obtained by dividing weekly 

earnings by weekly hours, appears to be subject to appreciable measurement error (Skinner et al. 

2002), as in similar surveys in other countries (Rodgers et al., 1993; Moore et al., 2000). The 

second measure is the direct variable. Employees are asked if they are paid by the hour and if yes, 

they are asked about their (basic) hourly rate. The problem with this variable is not measurement 

error (which we shall assume to be absent) but missing data. The proportion responding to the 

direct variable is about 43% overall, with a higher fraction for the lower paid. 
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Our aim is to estimate the distribution of hourly pay, with particular focus on the bottom end of 

the distribution, such as the proportion of low paid employees in the population. The 

cumulative distribution function of hourly pay is defined as 

         
∈

= ≤∑1( ) ( )i
i U

F y I y y
N

,                 (1) 

where iy  is the (true) hourly earnings of employee i , U  is the population of employees of 

interest, N  is the size of  U  and (.)I  is the indicator function indicating if a condition is true or 

false and thus ( )F y  denotes the proportion of employees with hourly earnings not greater than a 

threshold y . The population may consist of all employees in the UK or of some subpopulation 

defined by for example age or gender. Only individuals’ main jobs will be considered here, 

ignoring second jobs. The problem is how to estimate ( )F y , for specified values of y .  

Following notation in section 1, we let values of the direct variable and derived variable be 

denoted iy  and ix  respectively for employee i . The response indicator is denoted ir  and a 

vector of other survey variables denoted iw . Missingness in ix  and iw  is negligible and we 

assume here that ix  and iw  are fully observed for all ∈i s .  

To derive a point estimator for ( )F y , we shall make the simplifying assumption that the 

population values ( , , , )i i i iy x w r iid∼ , i.e. independently and identically distributed (irrespective of 

whether the employee is in the sample). One possible concern about this assumption is that it 

takes no account of possible differential unit nonresponse in the LFS. Survey weights have been 

constructed to address this problem. In principle, weights could be introduced into the point 

estimation procedure we shall develop, following a pseudo-likelihood procedure (Skinner, 1989) 

as in Skinner et al. (2002). However, the weights in the LFS do not vary greatly and for simplicity 

we shall not pursue this approach here. Another possible concern about the iid assumption is 

that it ignores the clustering of individuals in households (the households are not clustered by 

geography in the LFS design). Ignoring the clustering should not lead to bias in the point 
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estimators we derive (following the logic of the pseudo-likelihood approach) and is unlikely to 

lead to more than negligible loss in efficiency (Scott and Holt, 1982). Where it may be important 

not to ignore the clustering is in variance estimation for the resulting point estimator. Our main 

interest in this paper is in point estimation and so this issue will only be referred to again briefly 

in sections 3.4 and 4.2. Note that many low pay estimates are produced separately for men and 

women, in which case the clustering issue only arises when a household contains more than one 

person working of a given gender. 

Under the iid assumption, if the iy  were observed completely in s , we could estimate ( )F y  

unbiasedly by 

         
∈

= ≤∑1ˆ( ) ( )i
i s

F y I y y
n

,               (2) 

where n  denotes the number of employees in the sample. The iy  are not, however, fully 

observed and imputation provides one approach to take account of this problem (Skinner et al., 

2002).  Imputed values îy  are constructed for employees where iy  is missing and ( )F y  is 

estimated by 

       
∈

= ≤∑1ˆ.( ) ( . )i
i s

F y I y y
n

,               (3) 

where .i iy y=  if = 1ir  and ˆ.i iy y=  if = 0ir . In order to obtain an unbiased estimator, we 

would ideally like to generate the imputed values îy  from the conditional distribution of true 

hourly pay given the derived variable and other covariates. This condition may be expressed as  

       =( . | , , 0)i i i if y x w r ( | , , 0)i i i if y x w r= = ,                         (4) 

where f  denotes a generic probability density function. If this condition holds the imputed 

estimator in (3) would have the same properties as the estimator in (2). The aim is therefore to 

estimate the distribution =( | , , 0)i i i if y x w r  and to draw imputed values from this estimated 
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distribution. However, since this distribution cannot be observed directly, further assumptions 

about the missingness of iy  are required (Little and Rubin, 2002). The MAR assumption 

referred to in section 1 may be expressed as: 

   | ,i i i iy r x w⊥ ,                            (5) 

where ⊥  denotes independence. Skinner et al. (2002) proposed one imputation method under 

this assumption, drawing imputed values from the estimated distribution =( | , , 1)i i i if y x w r  

leading to an approximately unbiased imputed estimator ˆ.( )F y . The alternative CME assumption 

referred to in section 1 may be expressed as: 

   ⊥ | ,i i i ix r y w ,                            (6) 

so that =( | , , 0)i i i if x y w r ( | , , 1)i i i if x y w r= = . The aim of this paper is to develop an imputation 

method under this CME assumption. This derivation is much less straightforward than under 

the MAR assumption because the conditioning variables on the right hand side of (6) are subject 

to missingness.  

3. Data Augmentation under the CME Assumption  

3.1 Outline of Data Augmentation Approach 

Data augmentation is a Markov chain Monte Carlo method, which enables imputation for 

complex missing data problems by iteratively solving more tractable complete data problems 

(Schafer, 1997 and Gelman et al., 1998). The method is most naturally viewed from a Bayesian 

perspective, although the resulting imputed values can be used for frequentist purposes as in our 

application. In the context of missing data, the data augmentation algorithm consists of a series 

of imputation steps (I-steps), which impute the missing values given all the observed data and a 

current set of parameters, and posterior steps (P-steps), in which the parameters of the model are 
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drawn from their posterior distribution given the complete data formed from the I-step. On 

convergence, the algorithm should provide imputed values from the conditional distribution of 

the missing values given the observed data, as in (4), where the distribution is integrated over any 

unknown parameters in the model with respect to the posterior distribution of these parameters 

given the data. To apply data augmentation to our problem we must first formulate our model 

more fully. We shall then specify the imputation step and posterior step in sections 3.2 and 3.3 

respectively.  

We introduce the following notation. The vectors of length ,n containing the sample values are 

denoted ,Y X  and R , for example 1( ,..., ) 'nY y y= . Similarly, W  denotes a matrix with values of 

the covariates. We suppose without loss of generality that for the direct variable only the first rn  

elements are observed in sample s  and the following rn n−  elements are missing. We write 

( , ) 'misobsY Y Y′ ′= , where 1( ,..., ) '
rnobsY y y=  is the observed part of Y  and 1( ,..., ) '

r nmis nY y y+=  is 

the missing part.  

For our application, we consider a model for , ,Y X R  conditional on W  which we express as 

( , | , ) ( | , , , )f Y X W f R Y X Wζ ψ , where ζ  and ψ  are the parameters of the complete data and the 

missing data mechanism respectively. We shall also require a prior density ( , )f ζ ψ  for ζ  and ψ . 

The predictive distribution of the direct variable required for the I-step is ( | , , , , )f Y X RW ζ ψ  and 

the complete-data posterior required for the P-step is ( , | , , , )f Y X RWζ ψ . It is convenient to 

express the parameter ζ   as 1 2( , )ζ ζ′ ′ ′ , where 1ζ  is the vector of parameters of 1( | , , )f Y X W ζ  and 

2ζ  is the vector of parameters of 2( | , )f X W ζ . Using the CME assumption, we have the 

factorisation  

       ( , , | , , )f Y X R W ζ ψ 1 2( | , , ) ( | , ) ( | , , )f Y X W f X W f R Y Wζ ζ ψ= ,              (7) 

which is convenient for the implementation of the I- and the P-steps. This factorisation into 

three models has a simple interpretation. The first model represents the predictive distribution 
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of the true hourly pay, the second the predictive distribution of the variable measured with error 

and the third factor represents a model for the nonresponse under the CME assumption.  

3.2 The Imputation Step 

The imputation step requires drawing imputed values for missing values of iy  from the 

predictive distribution ( | , , 0, , )i i i if y x w r ζ ψ= . Using the property under CME and (7), we have   

           ( | , , 0, , )i i i if y x w r ζ ψ= ( , , 0 | , , )
( , 0 | , , )
i i i i

i i i

f y x r w
f x r w

ζ ψ
ζ ψ

==
=

 1
( 0 | , , )

( | , , )
( 0 | , , , )
i i i

i i i
i i i

f r y w
f y x w

f r x w
ψζ
ζ ψ

==
=

   

and therefore 

                  ( | , , 0, , )i i i if y x w r ζ ψ= 1( | , , ) ( 0 | , , )i i i i i if y x w f r y wζ ψ∝ = .                      (8) 

The I-step may thus be implemented as follows. Given current values of the parameters ( )
1
dζ  and 

( )dψ , where d  denotes the iteration of the data augmentation procedure, 0,...,d D= , a possible 

imputed value for nonrespondent i , denoted ( 1)*ˆ diy
+ , is drawn ( 1)* ( )

1ˆ ~ ( | , , )d d
i i i iy f y x w ζ+ . 

Rejection sampling (Tanner, 1996 and Gelman et al., 1998) is then performed based on the 

nonresponse model, accepting ( 1)*ˆ diy
+  for imputation with probability ( 1)* ( )ˆ( 0 | , , )d d

i i if r y w ψ+=  

( 1)*d
iρ
+= , where ( 1)*d

iρ
+  denotes the probability of nonresponse. If accepted, we set 

( 1)* ( 1)ˆ ˆd d
i iy y+ += , where ( 1)ˆ diy

+  is the imputed value for nonrespondent i  at iteration 1d + . If 

rejected, another value ( 1)*ˆ diy
+  is drawn and so on. The I-step in (8) has therefore a simple 

interpretation and is easy to implement. The model 1( | , , )i i if y x w ζ  is henceforth referred to as 

the imputation model and ( 0 | , , )i i if r y w ψ=  as the nonresponse model. An advantage of the 

factorisation in (7) is that a model for X  does not need to be fitted, and therefore no 

assumptions need to be made about this distribution.  

To draw values ( 1)*ˆ diy
+  from ( )

1( | , , )di i if y x w ζ  in practice, we initially use a standard parametric 

regression model. Using the logarithmic transformation for iy  it is assumed that 

   2
1 | ,ln( ) | , , ~ ( ; )i i i i Y XWy x w Nζ η β σ ,                        (9) 
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where iη  is a vector of covariates, functions of ix  and iw , β  is a vector of coefficients and 

2
| ,Y XWσ  denotes the conditional variance of ln( )iy  given ix  and iw . The vector of parameters is 

2
1 | ,( , )Y XWζ β σ′ ′= . Regression imputation can then be performed adding a normal error to the 

predicted values from the model (David et al. 1986). Similar assumptions as in (9) have been 

made by Raghunathan et al. (2001) and by Heitjan and Rubin (1990) for heaped, rounded and 

truncated data. Greenlees et al. (1982) use these assumptions for estimating regression models 

for income data in the presence of nonignorable nonresponse and find that the assumptions 

approximately hold for an earnings variable obtained from a validation study. Since the 

assumptions in (9) refer to respondents and nonrespondents, the validity of these distributional 

assumptions are strictly speaking untestable for our example. Applying the model in (9) to LFS 

data based on respondents only, i.e. where 1ir = , we found that the residuals are approximately 

normally distributed. However, there was an indication that the residual variance may increase 

with increasing predicted values such that the assumption of homoscedasticity may not be 

adequate.  

To relax the distributional assumptions made in (9), in particular to address the problem of a 

possible departure from the assumption of constant variance, the use of hot deck imputation 

instead of parametric regression imputation is considered for the I-step. Predictive mean 

matching imputation (Little, 1988 and Heitjan and Little, 1991), which is based on the 

predictions for ln( )iy , is proposed. This form of donor imputation has the advantage that 

actually observed values are imputed that may preserve the shape of the earnings distribution, 

for example that preserve truncation, heaping and rounding effects. Two forms of predictive 

mean matching imputation are implemented, hot deck imputation within classes and nearest 

neighbour imputation, where the classes and the nearest neighbours are defined based on the 

predictions of the regression model for ln( )iy . The imputation classes are defined as equally 
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spaced intervals of the range of the predicted values, such as £1.50 classes. In total 9 classes 

were used. Under hot deck imputation within classes Q  donor values, denoted * *
1ˆ ˆ,...,i iQy y , are 

selected with simple random sampling without replacement for nonrespondent i  from the same 

class. Under nearest neighbour imputation the /2Q  responding nearest neighbours above and 

below the predicted value for nonrespondent i  are used to obtain the Q  possible values for 

imputation, where the value for Q  is an even number. However, under hot deck imputation 

within classes and nearest neighbour imputation the number of values that can be chosen for 

imputation is restricted due to the definition of the classes and the nearest neighbours. The 

acceptance-rejection procedure based on the probability iρ 1 ( 1 | , , )i i if r y w ψ= − =  is therefore 

modified using a weighted bootstrap method as described in Carroll et al. (1995) and Tanner 

(1996), since classical rejection sampling requires being able to generate a large number of 

potential imputed values, which is only possible under parametric random regression imputation. 

Under the weighted bootstrap method the value for imputation, ( 1)ˆ diy
+ , for iteration 1d + , is 

sampled out of the Q  possible values ( 1)* ( 1)*
1ˆ ˆ,...,d d
i iQy y+ +  with probabilities 

                *( 1) ( 1)* ( 1)*( ) ( )

1
( 0 | , , )/ ( 0 | , , )

Q
d d dd d
iq i iq i i iq i

q
f r y w f r y wρ ψ ψ+ + +

=
= = =∑� ,                    (10) 

for all 1,...,q Q= . Note that under both, rejection sampling and the weighted bootstrap method, 

in each I-step only one value ( 1)ˆ djy
+  is imputed for each nonrespondent. The proposed I-step  

extends the MAR-based imputation procedure described in Skinner et al. (2002) where values 

are drawn from the predictive distribution ( | , , 1)i i i if y x w r =  without the addition of rejection 

sampling.  

3.3 The Posterior Step 

The P-step requires drawing values of the parameters from the complete data posterior 

distribution. Under the factorisation (7) this distribution can be expressed as  
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             1 2( , , | , , , )f Y X RWζ ζ ψ 1 1 2 2( | , , ) ( ) ( | , ) ( ) ( | , , ) ( )f Y X W f f X W f f R Y W fζ ζ ζ ζ ψ ψ∝ ,             (11) 

assuming that the prior distribution 1 2( , , )f ζ ζ ψ  factors into 1 2( ) ( ) ( )f f fζ ζ ψ , i.e. that the parameters 

1ζ , 2ζ  and ψ  are a priori independent. Since the likelihood function also factorises with respect 

to these parameters, the posterior distribution of 1ζ , 2ζ  and ψ  factorises into three independent 

posteriors. A posterior for 2ζ  does not need to be specified since the I-step does not require a 

model for X .  

To proceed, we need to compute (11) specifying the likelihood function and priors. An 

assumption about 1( | , , )f Y X W ζ  was already made in (9). For the response model the following 

notation is introduced. Let ( 1 | , , ) ( )i i i i if r y w G pψ τ ψ= = = , where iτ  is a row-vector including 

functions of iy  and iw , ip  denotes the probability of response and G  the logistic regression 

model, exp( )
( )

1 exp( )
i

i
i

G
τ ψ

τ ψ
τ ψ

=
+

. It follows that the complete-data likelihood, assuming independence 

across units given the parameters, is: 

( , , | , , )f Y X R W ζ ψ 2 1/2 2
2| ,

1 | ,

1
( ) exp (ln( ) )

2

n

i iY XW
i Y XW

yσ η β
σ

−

=

⎧ ⎫⎪ ⎪−⎪ ⎪⎪ ⎪∝ −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∏    

        2
1
( | , )

n

i i
i
f x w ζ

=
∗∏ { }(1 )

1
( ) 1 ( ) ii

n
rr

i i
i
G Gτ ψ τ ψ −

=
∗ −∏ ,             (12) 

where (ln( ) | , )i i i iE y x wη β = .  

We now turn to the specification of the prior distributions. Given the large dataset and the lack 

of any clear prior information about the parameters, we seek computationally convenient 

noninformative priors (Box and Tiao, 1992 and Gelman et al., 1998). A noninformative prior for 

ζ  following calculations in Schafer (1997) and Box and Tiao (1992) is         

    2 1/2 2 3/2
| | ,( ) ( ) ( )XW Y XWf ζ σ σ− −∝ ,                            (13) 
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where 2
|XWσ  denotes the conditional variance of X  given ,W  so that the prior for ζ  factors into 

independent priors for 1ζ  and 2ζ . The prior in (13) is derived using a noninformative prior for 

the parameter of the joint distribution of X  and Y  given ,W  representing a limiting form of the 

normal inverted Wishart density, and applying the one-to-one transformation between the 

parameter of this joint distribution and ζ . The resulting posterior distribution for 

2
1 | ,( , )Y XWζ β σ′ ′= , discarding proportionality constants, is 

 1( | , , )f Y X Wζ 2 3/2 2 1/2 2
2| , | ,

1 | ,

1
( ) ( ) exp (ln( ) )

2

n

i iY XW Y XW
i Y XW

yσ σ η β
σ

− −

=

⎧ ⎫⎪ ⎪−⎪ ⎪⎪ ⎪∝ −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∏  

        
3( )2 22 2| ,

1| ,

1( ) exp (ln( ) )
2

nn

i iY XW
iY XW

yσ η β
σ

+−

=

⎧ ⎫⎪ ⎪−⎪ ⎪⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∑ .             (14) 

In the special case that the data has a monotone missing-data pattern (Little and Rubin, 2002), as 

in our example, and since the parameters are independent, the posterior 1( | , , )f Y X Wζ , 

following derivations in Box and Tiao (1992), can be expressed as the product of a multivariate 

normal distribution, 2 1
| ,

ˆ( , ( ) )Y XWN β σ η η −′ , and a scaled inverted chisquare distribution, 2
1ˆ ˆ nY Yε ε χ−

−′ , 

with n-1 degrees of freedom and scaling factor ˆ ˆY Yε ε′ , where β  and iη  are defined in (9) and η  

defines the corresponding matrix, β̂  is the maximum likelihood estimate, 1ˆ ( ) ln( )Yβ η η η−′= , and 

ˆˆ ln( )Y Yε ηβ= − , both based on augmented data ln( )Y . The required parameters can therefore 

be drawn from the posterior distribution as follows   

                2 2
1| , ˆ ˆ| , , ~ Y Y nY XW Y X Wσ ε ε χ−

−′     and     2 2 1
| , | ,

ˆ| , , , ~ ( , ( ) )Y XW Y XWY X W Nβ σ β σ η η −′ .         (15) 

We now turn to the problem of drawing parameters for the response model ( | , , )f R Y W ψ  in the 

posterior step based on complete data. Several approaches for specifying priors for binomial 

regression problems have been proposed (Bedrick et al., 1996). It is common to assume a 

normal or noninformative prior ( )f ψ , which is convenient in large sample situations where the 
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posterior of ψ  is approximately normal (Zellner and Rossi, 1984). Here, the prior is specified as 

( )f cψ ∝ , where c  is a constant, such that for the complete-data posterior of ψ  we have 

                  ( | , , )f Y RWψ ( | , , )f R Y W cψ∝ ( | , , )f R Y W ψ∝ exp(log( ( | , , )))f R Y W ψ= .              (16) 

Following derivations in Zellner and Rossi (1984) and expanding ( ) log( ( | , , ))L f R Y Wψ ψ≡  in a 

Taylor series about the modal value of (16), i.e. the maximum likelihood estimate ψ̂ , and using 

the first order approximation, we obtain 

     ( | , , )f Y RWψ 1 ˆ ˆexp{ ( ) ( )}
2

Tψ ψ ψ ψ′∝ − − − ,                         (17) 

such that ψ  follows approximately a multivariate normal distribution with mean ψ̂  and 

variance-covariance matrix 1T− ,  

     1ˆ~ ( , )N Tψ ψ − .                           (18) 

The matrix T  is defined as 
2

ˆ

( )L
T V

ψ ψ

ψ τ τ
ψ ψ =

⎡ ⎤∂ ′⎢ ⎥= − =⎢ ⎥′∂ ∂⎣ ⎦
, where τ  is a matrix including functions of 

Y  and W  and V  is a diagonal matrix with element  

2
2 2

( )1
(1 )(1 )
i i ii i

i i
i ii i

r G gr rv g
G GG G

⎡ ⎤ ′−−⎢ ⎥= + −⎢ ⎥ −−⎣ ⎦
,                          (19) 

where ˆ( )i iG G τ ψ= , 
ˆz

(z ) ˆ( )
z

i i

i
i i

i

dG
g g

d τ ψ
τ ψ

=

⎡ ⎤
⎢ ⎥= =⎢ ⎥⎣ ⎦

 and 
ˆz

(z )
z

i i

i
i

i

dg
g

d τ ψ=

⎡ ⎤
′ ⎢ ⎥= ⎢ ⎥⎣ ⎦

. We now have specified 

the required imputation and posterior step for data augmentation under the CME assumption.  
 

3.4 Inference Under Data Augmentation 

Suppose that the data augmentation algorithm has run long enough to achieve approximate 

stationarity and to be independent of the initial starting values (0)

1ζ  and (0)ψ , i.e. d  is large 

enough such that the vectors of parameters ( )

1
d

ζ  and ( )d
ψ  are essentially draws from the 

observed-data posterior. Then the imputed values of iy  will follow the distribution in (4) and the 

estimator in (3) will be approximately unbiased, under the model assumptions. In order to 
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improve the efficiency of this estimator, 1M >  values ( )ˆmiy , 1,...,m M= , may be determined for 

each nonrespondent from repeated I-steps. The resulting point estimators from each of the M  

completed datasets, denoted ( )ˆ. ( )mF y  for 1,...,m M= , may then be combined (Rubin, 1987) to 

give the point estimator: 

     ( )

1

1ˆ ˆ.( ) . ( )
M

m

m
F y F y

M =
= ∑ .               (20) 

The method of multiple imputation, moreover, suggests a method of variance estimation in the 

context of data augmentation (Little and Rubin, 2002). For the purpose of variance estimation, 

the M  sets of multiple imputations should not be obtained from successive sets of imputed 

values misY  since they are correlated. Instead, the Markov chain may be subsampled after an 

initial burn-in period using every k -th iterate to achieve approximate independence of repeated 

imputations (see section 4.1 for choice of k ). An estimator of the variance of ˆ.( )F y  is then given 

by (Rubin, 1987): 

           ˆ ˆˆvar ( .( )) . (1 1/ ) .MI F y A M B= + +  ,                                   (21) 

where ( )

1

1 ˆ. .
M

m

m
A A

M =
= ∑  is the within imputation variance, and ( ).̂ mA  is the standard variance 

estimator valid for complete data, applied to obsY  and the imputed values ( )m
misY  for the m -th 

imputation, and ( ) 2

1

1ˆ ˆ ˆ. ( . ( ) .( ))
1

M
m

m
B F y F y

M =
= −

− ∑  is the between imputation variance. This 

variance estimator fails, however, to take account of the clustering in the LFS. 

4. Simulation Study 

4.1 Design of the Simulation Study 

The aim of this study is to evaluate the performance of the point estimator (20) empirically 

under ideal conditions and under misspecification of the imputation and the nonresponse 
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model. The main emphasis is on the bias of the point estimator. Data augmentation under CME 

is compared to MAR-based imputation methods. Independent repeated samples ( )hs , 

1,..., ,h H=  are generated with values , , , ,i i i iy x w r  ( )hi s∈ . To reflect the features of the LFS, 

values of iw  are generated from data for approximately 16,000 employees in the March-May 

2000 LFS quarter using simple random sampling with replacement, i.e. adopting a bootstrap 

approach. The bootstrap approach provides flexibility in the choice of sample size, while treating 

the underlying population as infinite, in line with the small sampling fraction of the LFS. 

Variables that are likely to be predictors of hourly earnings, measurement error in the derived 

variable or nonresponse are included in iw . The values for ,i iy x  and ir  are generated from a 

model for different reasons. The values iy  are modelled since this variable is subject to missing 

data in the original LFS – ln( )iy  is generated from a fitted linear regression on ln( )ix  and six 

other covariates including squared terms and with an added normal error. The values ir  are 

modelled so that the nonresponse (missing data) mechanism takes various known forms, 

including CME, MAR and a nonignorable form that is neither CME nor MAR. Logistic 

regression models are used relating ir  to ln( )iy , ln( )ix  and other covariates that are likely to be 

predictors of nonresponse. The values for ix  are simulated from a model to avoid duplications 

of values ( , )i ix w  in ( )hs . Duplications of units were regarded as unrealistic since the proposed 

imputation methods are based on the predicted values for iy  given ( , )i ix w  and duplications 

would have led to identical predicted values for some units ( )hi s∈ . The model generating ln( )ix  

has six covariates including squared terms and a normal error. Some of the covariates are also 

included in the model which generates ln( )iy . Note that the covariates involved in the three 

models for ln( )iy , ln( )ix  and ir  are not necessarily the same since predictions of different types 

of variables are required. All models were fitted to respondents in the original LFS sample to 

obtain estimates of the required parameters.  
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Ideally the sample ( )hs  should be of the same size as the original LFS sample but, because of the 

computer intensive nature of the data augmentation approach, this is reduced to 1000n =  with 

the number of simulation replications being set at 100H = . The specifications for the data 

augmentation procedure are as follows. A single Markov Chain was generated and convergence 

of the algorithm was tested using time series analysis based on components of ζ  and ψ . To 

determine the subsampling constant k  (see section 3.4), autocorrelation functions were 

investigated as described in Schafer (1997). An initial burn-in period of 200 iterations and a 

subsampling constant of 100k =  resulting in an overall length of 1100D =  were found 

adequate. The initial starting values (0)
1ζ  and (0)ψ  are the maximum likelihood estimates based on 

respondent data in ( )hs . Alternative specifications of the burn-in period, the parameters k  and 

,D  as well as other starting values (0)
1ζ  and (0)ψ  were used, however, leading to very similar 

results. The total number of imputations for all imputation methods used here is 10M = .  

The performances of the following three point estimators are investigated: 1̂.F  is the estimated 

proportion of employees paid below the NMW (=£3.00 per hour aged 18-21, £3.60 per hour 

aged 22+ in March 2000), 2̂.F  is the estimated proportion paid at the NMW (5p above and 

below the threshold) and 3̂ .F  is the estimated proportion paid between the NMW and £5 per 

hour. The ‘true’ values determined via simulation are 1F =  0.95%, 2F = 10.41% and 

3F = 27.41%. The simulation estimates of bias and standard errors are defined as 

ˆˆ ( .) .bias F F F= −  and 1 ( ) 2 1/2

1

ˆ ˆˆ ( .) [( 1) ( . .) ]
H

h

h
se F H F F−

=
= − −∑ , where 1 ( )

1

ˆ. .
H

h

h
F H F−

=
= ∑ . Data 

augmentation as set out in section 3 under the CME assumption is referred to as DA-CME. The 

abbreviations Reg Imp, NN and IC refer to regression imputation, nearest neighbour and hot 

deck imputation based on imputation classes respectively. In addition, standard data 

augmentation based on the MAR assumption without the addition of rejection sampling, as for 

example described in Schafer (1997), is implemented and is referred to as DA-MAR. For 
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comparison, MAR-based imputation without draws of parameters from the corresponding 

posterior distributions and without rejection sampling as described in Beissel-Durrant and 

Skinner (2004) is analysed.  

4.2 Results of the Simulation Study 

We first analyse the performance of DA-CME under a correct CME nonresponse mechanism 

and correct covariates so that the imputation model coincides with the model generating ln( )iy . 

The results are presented in Table 1. Different imputation methods are compared. Regression 

imputation performs as expected very well with no significant bias. Nearest neighbour 

imputation also performs well with all biases below 2%. The significant bias for 3̂.F  for nearest 

neighbour imputation might be caused by the use of the weighted bootstrap, which is an 

approximation to the rejection sampling procedure. To improve the results for NN the 

parameter Q  may be increased from 10 to 20 which was found to lead to an improvement in the 

result for 2̂.F  and 3̂.F . Since the results are very similar, however, only 10Q =  was used in the 

following. For hot deck imputation within classes all estimators are not significantly biased. An 

increased value for Q  leads as expected to a reduction in the bias. However, a higher relative 

bias was obtained for 1̂.F  which is thought to be related to the definition of the imputation 

classes and indicates a potential disadvantage of the IC method, since the classes are defined 

arbitrarily and the performance of the point estimators may depend on the definition of the 

classes. Hot deck imputation within classes is therefore not analysed any further here. We 

conclude that there is no evidence of important bias for the DA-CME method if the imputation 

model and the nonresponse model are correctly specified.  

[Table 1 about here] 

Table 2 provides estimates of corresponding simulation standard errors for the nearest 

neighbour imputation method using DA-CME. The results are compared to standard errors of 
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the three point estimators derived under data augmentation based on the MAR assumption 

(DA-MAR) and MAR-based NN imputation. As expected, we have a slightly higher estimate for 

DA-CME than for the MAR-based methods, caused by the additional draws from the posterior 

distributions of the parameters and the use of rejection sampling in the imputation step. 

However, the increase is around or less than 10%. To investigate the performance of the 

multiple imputation variance estimation formula, simulation estimates of biases and coverage 

rates are given in Table 3. Only 3̂ˆvar ( .)MI F  for NN imputation was found to be significantly 

biased. The estimated coverage rates are close to 95% for the 95% confidence intervals. Thus, 

the multiple imputation variance formula performs reasonably well for DA-CME. Note that 

these results are only based on 100H =  iterations. For a more detailed analysis 1000H =  or 

higher is recommended. Note that the multiple imputation formula does not currently allow for 

clustering of individuals within households.    

[Table 2 and 3 about here] 

Of particular interest is the performance of the DA-CME method under misspecification of the 

imputation model and the nonresponse model. Table 4 summarises the performance of the 

method under misspecification of the imputation model. The misspecifications 1-3 indicate an 

increasingly more complex model generating iy  in comparison to the assumed imputation 

model. Misspecification 3 in addition allows for a model for ix  that differs significantly from the 

model that generates iy . The case where the values ix  are not generated but original values from 

the LFS sample are used via the bootstrap approach is also investigated. As expected, with an 

increasing degree of misspecification the amount of bias for all three point estimators increases 

with some biases being significant. This amount is greatest for regression imputation for 1̂.F  

which may reflect a greater sensitivity of the regression imputation procedure to misspecification 

of the imputation model. In comparison, nearest neighbour hot deck imputation seems to 

perform reasonably well under misspecification of the imputation model with almost all 
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estimated relative biases below 3%. It should be noted that DA-CME may not fully rely on the 

specifications of the imputation model since this model is used to generate possible values *̂
iy  

which are then accepted or rejected for imputation by the nonresponse model. This can be seen 

for example in the generally good performance of 2̂.F  and 3̂.F  under misspecification of the 

imputation model. Here, nearest neighbour imputation seems to be less dependent on 

assumptions about the model and may therefore be preferable to regression imputation.  

[Table 4 about here] 

Since the DA-CME method also requires the specification of a nonresponse model it is of 

interest to analyse its performance under misspecification of the nonresponse mechanism. Table 

5 shows the results of DA-CME when in fact a nonignorable nonresponse mechanism holds 

that is a.) an extended version of CME which includes 6 more covariates in the model generating 

nonresponse (CME+6), and b.) dependent on ix  in addition to iy  and iw  and therefore 

dependent on all variables in the simulated dataset, which is referred to as the full model. The 

case of a MAR nonresponse mechanism is also considered. As expected, for almost all 

estimators we observe an increase in the bias. Regression imputation seems to be more sensitive 

to misspecification of the nonresponse model than nearest neighbour imputation leading to 

some significant biases of around 6-8% for 2̂.F  and 3̂ .F  under the full model and MAR 

nonresponse. This is thought to be related to the use of rejection sampling where the 

specification of the nonresponse model is of direct relevance. The weighted bootstrap as used in 

the hot deck imputation method seems to be less dependent on parametric assumptions about 

the nonresponse model. For nearest neighbour imputation most of the biases are below 3% for 

all three nonresponse mechanisms. We conclude that DA-CME using nearest neighbour 

imputation seems reasonably robust to misspecification of the nonresponse mechanism and 

performs well even under MAR and a full nonignorable nonresponse mechanism. In 

comparison, Table 6 shows the performance of the MAR-based imputation methods under the 
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CME nonresponse mechanism. The results seem to indicate a slightly higher sensitivity to 

misspecification of the nonresponse model for the MAR-based methods than for DA-CME. 

However, the overestimation seems to be less than 7% which does not make the resulting 

estimates unusable. Here, regression imputation and nearest neighbour imputation seem to 

perform very similarly if the imputation model is correctly specified. 

[Table 5 and 6 about here] 

5. Application to the UK Labour Force Survey 

The different imputation methods are also applied to the Labour Force Survey. Table 7 shows 

estimates 1̂.F , 2̂.F  and 3̂.F  for the March-May 2000 quarter. We can see that as expected the DA-

CME methods lead to a reduction of the estimates in comparison to the MAR-based methods. 

For 1̂.F , the estimated proportion of employees earning below the NMW, we have 0.45% for 

DA-CME whereas for the MAR-based methods we obtain a value of 0.50%, which indicates an 

overestimation of about 10% by the MAR-based methods. This coincides approximately with 

findings from the simulation study which indicated an overestimation of less than 7%. We find 

that DA-MAR and the MAR-based methods lead as expected to very similar estimates. The data 

augmentation procedures were also analysed using different starting values for the unknown 

parameters as well as different run times D  and subsampling constants k  leading to similar 

results as in Table 7.  

For all three methods DA-CME, DA-MAR and MAR-based imputation nearest neighbour and 

hot deck imputation within classes seem to produce very similar estimates. Overall, random 

regression imputation did not seem to perform very well in the actual application to LFS data. 

The estimate 1̂.F  under regression imputation for example is higher than for the two hot deck 

imputation methods (1.23% in comparison to 0.50% in the case of MAR-based imputation). 

This is thought to be related to a greater dependency of the regression method on distributional 
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assumptions, in particular the assumption of constant variance in the imputation model. We 

therefore applied regression imputation where the variance of the added on residuals is defined 

within classes of the predicted values, i.e. allowing for a non-constant variance. We observed 

that the estimates 1̂.F  for example were reduced, which indicates a stronger dependency on 

distributional assumptions under regression imputation. It was found that the hot deck methods 

seem to preserve certain features of the hourly pay distribution better, in particular truncation 

and rounding effects. Overall, nearest neighbour hot deck imputation seems to be preferable.  

[Table 7 about here] 

6. Conclusions 

If ignored, measurement error may lead to serious bias in the estimation of hourly pay 

distributions, particularly at the lower end. In this paper, we have considered alternative 

estimation methods, which correct for measurement error using a subsample of accurately 

measured values of hourly pay. Existing methods assume that these accurately measured values 

are missing at random (MAR). We have developed a new estimation method under an alternative 

nonignorable missingness assumption, that a common measurement error (CME) process 

applies to respondents and nonrespondents. The method adapts the Bayesian method of data 

augmentation using hot deck imputation to allow for the ‘spiky’ nature of the hourly pay data, 

which does not follow a simple homoscedastic parametric regression model. Our simulation 

study shows that the method produces approximately unbiased estimates under correct 

specification of  models and that the method is reasonably robust against misspecification of the 

imputation model and of the nonresponse model (in the case of nearest neighbour hot deck 

imputation). In particular, the method showed a good performance under a general 

nonignorable nonresponse mechanism.  
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Existing MAR-based methods are found to overestimate proportions of low paid employees by 

no more than 10%, in relative terms, in the simulation study. Using LFS data from March-May 

2000, the existing MAR-based method, similar to that used by the Office for National Statistics, 

estimates the proportion of employees earning below the National Minimum Wage (£3.00 per 

hour aged 18-21 and £3.60 per hour aged 22+) as 0.50%, compared with an estimate of 0.45% 

for the new CME-based method (using nearest neighbour imputation). This suggests a similar 

degree of overestimation by the MAR-based method when applied to LFS data, although further 

work is needed on standard error estimation. The new method displays somewhat higher 

standard errors than the MAR-based methods (e.g. 10% higher for some low pay estimates). 

Some variance estimation methods have been developed for the new method based on multiple 

imputation formulae, but these are tentative and need extending for the LFS data to allow, in 

particular, for clustering of individuals within households. 
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Table 1: Simulation Estimates of Biases of Estimators 1̂ .F , 2̂ .F  and 3̂ .F  for Different 

Imputation Methods using Data Augmentation DA-CME, Assuming CME and Correct 

Covariates.  

DA-

CME 

Bias of 

1̂ .F  
Rel. Bias 

of 1̂ .F  
Bias of 

2̂ .F  
Rel. Bias 

of 2̂ .F  
Bias of   

3̂ .F  
Rel. Bias 

of 3̂ .F  

Reg Imp 0.10*10-3 
(0.29*10-3) 

1.05 % 0.46*10-3 
(0.94*10-3)

0.44 % 0.60*10-3 
(1.34*10-3) 

0.21 % 

NN, 
Q=10 

0.06*10-3 
(0.34*10-3) 

-0.65 % 1.19*10-3 
(1.13*10-3)

1.14 % 5.11*10-3 
(1.49*10-3) 

1.86 % 

NN, 
Q=20 

-0.15*10-3 
(0.34*10-3) 

-1.62 % 0.97*10-3 
(1.11*10-3)

0.93 % 4.93*10-3 
(1.47*10-3) 

1.79 % 

IC, 
Q=10 

0.50*10-3 

(0.35*10-3) 
5.32 % -0.75*10-3 

(1.19*10-3)
-0.72 % 2.65*10-3 

(1.53*10-3) 
0.96 % 

IC, 
Q=20 

0.38*10-3 
(0.36*10-3) 

4.03 % -0.43*10-3 
(1.15*10-3)

-0.41 % 2.73*10-3 
(1.53*10-3) 

0.99 % 

Standard errors of bias estimates are below the estimates in parentheses.  

 

 

Table 2: Simulation Estimates of Standard Errors of Estimators 1̂ .F , 2̂ .F  and 3̂ .F  under 

Correct Covariates and CME Nonresponse for DA-CME and MAR Nonresponse for 

DA-MAR and MAR-based Imputation. 

Imputation Method 
1
ˆ( .)se F  2

ˆ( .)se F  3̂( .)se F  

DA-CME NN 3.43*10-3 11.35*10-3 14.97*10-3 

DA-MAR NN 3.07*10-3 10.76*10-3 14.78*10-3 

MAR-based NN 3.07*10-3 10.56*10-3 14.57*10-3 
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Table 3: Simulation Estimates of Relative Biases and Coverage Rates of the 95% 

Confidence Intervals of ˆˆvar ( .)MI F  for the three Point Estimators using DA-CME under 

CME Nonresponse and Correct Covariates.  

DA-CME Rel. Bias 

1̂ˆvar ( .)MI F  
Rel. Bias 

2̂ˆvar ( .)MI F
Rel. Bias 

3̂ˆvar ( .)MI F
Coverage 

1̂ˆvar ( .)MI F
Coverage 

2̂ˆvar ( .)MI F  
Coverage 

3̂ˆvar ( .)MI F
Reg Imp -1.27 % -2.16 % 3.44 % 94 % 94 % 95 % 
NN -6.11 % -3.45 % 6.15 % 93 % 95 % 96 % 

 

 

 

Table 4: Simulation Estimates of Biases of Estimators 1̂ .F , 2̂ .F  and 3̂ .F  for Regression 

and Nearest Neighbour Imputation using Data Augmentation DA-CME under 

Misspecification of the Imputation Model, Assuming CME. 

DA-CME Bias of 

1̂ .F  
Rel. Bias 

of 1̂ .F  
Bias of 

2̂ .F  
Rel. Bias 

of 2̂ .F  
Bias of 

3̂ .F  
Rel. Bias 

of 3̂ .F  

Reg Imp 

Misspecification 1 0.31*10-3 
(0.21*10-3) 

5.70 % -0.18*10-3 
(0.82*10-3)

-0.19 % -3.73*10-3 
(1.41*10-3) 

-1.39 % 

Misspecification 2 0.39*10-3 
(0.21*10-3) 

8.22 % -0.09*10-3 
(0.85*10-3)

-0.10 % -3.73*10-3 
(1.34*10-3) 

-1.39 % 

Misspecification 3 0.32*10-3 
(0.19*10-3) 

8.08 % 1.78*10-3 
(0.80*10-3)

0.19 % -4.54*10-3 
(1.45*10-3) 

-1.71% 

ln( )ix  not generated 0.09*10-3 
(0.22*10-3) 

2.49 % -0.09*10-3 
(0.61*10-3)

-0.17 % 0.48*10-3 
(1.34*10-3) 

0.20 % 

NN 

Misspecification 1 -0.01*10-3 
(0.25*10-3) 

-0.16 % 1.25*10-3 
(1.07*10-3)

1.34 % 6.08*10-3 
(1.78*10-3) 

2.28 % 

Misspecification 2 0.12*10-3 
(0.25*10-3) 

2.54 % 2.43*10-3 
(1.02*10-3)

2.59 % 7.28*10-3 
(1.80*10-3) 

2.74 % 

Misspecification 3 0.06*10-3 
(0.22*10-3) 

1.56 % 3.48*10-3 
(1.04*10-3)

3.71 % 7.39*10-3 
(1.71*10-3) 

2.78 % 

ln( )ix  not generated -0.07*10-3 
(0.21*10-3) 

-2.01 % -0.81*10-3 
(0.75*10-3)

-1.61 % -1.39*10-3 
(1.55*10-3) 

-0.59 % 
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Table 5: Simulation Estimates of Biases of Estimators 1̂ .F , 2̂ .F  and 3̂ .F  for Regression 

and Nearest Neighbour Imputation using Data Augmentation (DA-CME) under 

Misspecification of the Nonresponse Mechanism, Assuming a Correct Imputation 

Model. 

DA-CME Bias of 

1̂ .F  
Rel. Bias 

of 1̂ .F  
Bias of 

2̂ .F  
Rel. Bias 

of 2̂ .F  
Bias of 

3̂ .F  
Rel. Bias 

of 3̂ .F  

Reg Imp 
CME+6 0.14*10-3 

(0.28*10-3) 
1.47 % 0.17*10-3 

(0.91*10-3)
0.16 % 0.33*10-3 

(1.25*10-3) 

0.12 % 

full model -0.43*10-3 

(0.28*10-3) 
-4.61 % -6.83*10-3 

(0.96*10-3)
-6.56 % -16.6*10-3 

(1.44*10-3) 
-6.07 % 

MAR -0.21*10-3 
(0.29*10-3) 

-2.20 % -7.14*10-3 
(0.93*10-3) 

-6.86 % -23.19*10-3 
(1.20*10-3) 

-8.46 % 

NN 
CME+6 -1.19*10-3 

(0.32*10-3) 

-1.25 % 1.64*10-3 

(1.14*10-3)
1.58 % 5.69*10-3 

(1.48*10-3) 

2.07 % 

full model -2.49*10-3 

(3.26*10-3) 
-2.61 % 0.45*10-3 

(1.37*10-3)
0.43 % 7.40*10-3 

(2.01*10-3) 

2.70 % 

MAR -0.35*10-3 

(0.32*10-3) 
-3.77 % -1.69*10-3 

(1.13*10-3)
-1.63 % -4.54*10-3 

(1.45*10-3) 
-1.65 % 

 
 
 
 
 

Table 6: Simulation Estimates of Biases of Estimators 1̂ .F , 2̂ .F  and 3̂ .F  for MAR-based 

Regression and Nearest Neighbour Imputation under a CME Nonresponse Mechanism. 

MAR-

based 

Bias of 

1̂ .F  
Rel. Bias 

of 1̂ .F  
Bias of 

2̂ .F  
Rel. Bias 

of 2̂ .F  
Bias of 

3̂ .F  
Rel. Bias 

of 3̂ .F  

Reg Imp 0.43*10-3 

(0.29*10-3) 

4.61 % 6.86*10-3 

(0.97*10-3) 

6.59 % 15.95*10-3 

(1.35*10-3) 

5.81 % 

NN 0.30*10-3 

(0.32*10-3) 

3.17 % 6.77*10-3 

(1.14*10-3) 

6.51 % 16.57*10-3 

(1.62*10-3) 

6.04 % 
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Table 7:  Estimates 1̂ .F , 2̂ .F  and 3̂ .F  for 18+ (unweighted) using DA-CME, DA-MAR 

and other MAR-based Imputation Methods using Random Regression, Nearest 

Neighbour and Hot Deck Imputation Within Classes, Applied to March-May 2000.  

 
1̂ .F  in % 2̂ .F  in % 3̂ .F  in % 

DA-CME 

Reg Imp 0.55 1.91 22.39 
NN 0.45 2.17 26.78 
IC 0.44 2.35 26.35 
DA-MAR 
Reg Imp 1.22 1.93 24.90 
NN 0.50 2.29 28.78 
IC 0.51 2.49 26.99 
MAR-based 

Reg Imp           1.24 1.89 26.27 

NN 0.50 2.27 29.04 

IC 0.50 2.43 29.11 

 

 

 

 

 


