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Abstract

Tropical cyclones are a highly destructive natural hazard that can cause extensive
damage to assets and loss of life. This is especially true for the many coastal cities and
communities that lie in their paths. Despite their significance globally, research on post-
cyclone recovery rates has generally been qualitative and, crucially, has lacked spatial
definition. Here, we used freely available satellite nighttime light data to model
spatially the rate of post-cyclone recovery and selected several spatial covariates
(socioeconomic, environmental and topographical factors) to explain the rate of
recovery. We fitted three types of regression model to characterize the relationship
between rate of recovery and the selected covariates; one global model (linear
regression) and two local models (geographically weighted regression, GWR, and
multiscale geographically weighted regression, MGWR). Despite the rate of recovery
being a challenging variable to predict, the two local models explained 42% (GWR)
and 51% (MGWR) of the variation, compared to the global linear model which
explained only 13% of the variation. Importantly, the local models revealed which
covariates were explanatory at which places; information that could be crucial to
policy-makers and local decision-makers in relation to disaster preparedness and

recovery planning.

Keywords: Post-Shaheen Cyclone Recovery, GIS, MGWR, Night Time Light NTL

Data, Community Resilience



1. Introduction and theoretical background

Tropical cyclones are destructive natural hazards that affect coastal areas in tropical
regions, commonly leading to long-lasting catastrophic impacts on physical,
socioeconomic and environmental assets, and loss of life. Cyclone impacts affect both
the private and public sectors, particularly the transport, education and business sectors.
The intensity of the impacts and recovery rates vary from place to place due to local
variations in community resilience and each population’s ability to adapt to, and cope
with, cyclone stressors (Xu & Qiang, 2021; Adger, 2000).

Cyclone recovery, as a process, can be defined as the effort, support and assistance
given to local communities during and after a disaster to achieve the states of
reconstruction and rehabilitation quickly, and to rebuild any damaged infrastructure
(Islam & Walkerden, 2014; Quarantelli, 1999; Oloruntoba et al.,2018;). During post-
disaster, the cyclone recovery stage is crucial in terms of revitalising the local economy
and building the resilience of local communities, particularly in reconstructing
destroyed houses, replacing damaged infrastructure and facilities, and restoring daily
services fully (Labadie, 2008; McEntire, 2012; Gaillard et al., 2019).

Across communities that lack vigorous capacity planning and metrics, assessment of
post-disaster recovery progress is often quite challenging (Horney et al.,2018).
Adaptive capacity is associated with the recovery process, and it refers to a local
community’s capability to handle a cyclone’s most destructive components;
predominantly storms, precipitation and high velocity winds. Similarly, the degree of
modification and confrontation to cyclone risk is a crucial determinant of recovery and
adaptation opportunities (Astill, 2017). The most relevant and effective sources of
capacity are assets, governmental polices, civil defence facilities, cultural knowledge,
social organizations and local solidarity networks (Uddin et al., 2020). Moreover,
community capacity includes households’ abilities to utilise, exploit and benefit of
these resources to cope with disaster impacts and reconstruct damaged assets and
infrastructure (Gaillard, 2010).

Spatially, cyclone recovery can be defined as the ability of each local community to
restore and rebuild livelihoods and production systems to normal levels pre-disaster
(Udden et al., 2021). Temporally, the period of recovery may also vary according to the

nature of the economic sector. For example, after a cyclone agricultural activity may



take months or even years to be reconstructed and restored (Handmer & Hillman, 2004;
Chhotray & Few, 2012). In contrast, the recovery progress and levels may be generally
high in urban communities that are resilient and well-prepared compared to deprived

urban agglomerations and rural areas.

Seeking to facilitate a community of practice for modelling disaster recovery, Miles et
al., (2019) suggested to increase the participation of all hazard researchers and
modellers in disaster recovery research. This would be an effective strategy to enrich
resources, tools and techniques of studying, modelling and simulating disaster recovery
particularly datasets, documentation, and programming libraries. Conducting a
literature survey of disaster recovery, Horney et al., (2017) developed a guiding
framework of disaster recovery indicators following the Federal Emergency
Management Agency (FEMA)’s Recovery Directorate in the United States (US). The
findings specified that the majority of recovery indicators were well constructed and
represented which supports post-disaster research and planning of management and
mitigation. Similarly, and using very high-resolution satellite images, Brown et al.,2008
developed a suite of indicators that enable monitoring and assessing rapid post-disaster
recovery and physical rehabilitation. These remote sensing indicators involves various
natural, environmental, and socioeconomic factors that are integrated in a reliable and

effective tool of recovery assessment.

Satellite sensor images, combined with other spatio-temporal data have been shown to
be effective inputs for cyclone damage assessment. Previous studies have been largely
restricted to non-spatial analysis of the economic impacts of cyclones (Hsiang & Jina,
2014; Moniruzzaman, 2019; Zhou & Zhang, 2021) and the variable impacts on different
land covers (Chen et al., 2013; Moatty et al., 2021; Shamsuzzoha et al., 2021). Recent
studies have established the importance of incorporating geospatial techniques and
satellite sensor imagery in cyclone damage assessment. For example, Jaman et al.
(2021) employed satellite microwave imagery, as well as GIS-based multi-criteria
analysis (MCA), to assess cyclone damage at a fine geographical resolution (village
level) at Bhadrak district in Odisha State, India. The findings indicated substantial
spatial variation in cyclone impacts and damage, particularly in the socioeconomic and
environmental sectors. These spatial differences were attributed mainly to disparities in
vulnerability and exposure across the study area. In another example, Cortés-Ramos et

al. (2020) analysed the impacts of tropical cyclones on the southern tip of the Baja
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California Peninsula, Mexico. Landsat 8 and MODIS images were used and several
spatial indices were calculated to assess cyclone damage spatially; specifically
vegetation damage. The results showed that there were high spatial variations of the
severe damages caused by high velocity wind and intense rainfall. Likewise, Ahammed
& Pandey (2021) provided a comprehensive assessment of the damage caused by
cyclone Amphan during 15-21 May 2020 to West Bengal and Odisha states in India.
They found that green cover and croplands were the most severely damaged, being
affected by the cyclonic surge and heavy precipitation.

In another foundational work, Stevenson et al., (2010) investigated the spatial variations
of recovery from Hurricane Katrina across coastal Mississippi. Utilizing building
permits and other statistical data, they found spatiotemporal variations of building
environment recovery and the recovery rates were associated with damage levels as
well as housing density and concentration. In assessing the same post-recovery
Hurricane Katrina, Abramson et al., (2010) adopted confirmatory factor analysis using
five measures of social role adaptation, mental and physical health, economic and
housing stabilities. Overall, all the indicators were significantly associated with the
developed latent measure of recovery while social and health measures indicated higher

associations.

Monitoring spatiotemporal changes of dynamic phenomena and events on the Earth’s
surface is crucial, particularly for planning and alleviating the effects of natural hazards
and risks (Doll et al.,2006; Zhao et al.,2018; Shi et al.,2020). Geospatial techniques and
remote sensing images have been employed extensively as effective instruments to
monitor human activities and environmental changes on the Earth’s surface (Du et al.,
2014; Li et al., 2016). Night-Time Lights (NTL) data in particular have great potential
for spatial analysis and modelling of human activities, physical dynamics and
interactions between the two (Bennett & Simth, 2017; Alahmadi et al., 2021a;
Alahmadi et al., 2021b). Night lights (and the consequent electricity consumption) can
be used as an indicator and proxy for community socioeconomic development and
wellbeing (Elvidge et al., 2012; Ghosh et al., 2013; Mann et al., 2016; Mohan & Strobl,
2017). With this argument, and over the post-disaster stage, few studies used NTL data
and geospatial techniques have been developed to quantify and assess cyclone damage,
community resilience and recovery spatially (e.g., Roman et al., 2019; Qiang et al.,
2020; Xu & Qiang, 2021; Sarkar, 2021). However, these studies are limited by the lack
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of adopting geospatial modelling approaches to estimate spatial variations of recovery

rates across small neighbourhoods.

Due to its location along three major water bodies (the Arabian/Persian Gulf, the Sea
of Oman and the Arabian Sea), Oman is the most prone country to tropical cyclones
amongst the countries of the Arabian Peninsula. With a long coastline (3165 km)
stretching from Musandam in the far north to the administrative boundaries of Yemen
in the south-west, the Omani coastal communities are exposed to devastating cyclones.
Historically, and over the last century up to 2021, the coastal areas of Oman were hit
by several cyclones that caused asset damage and fatalities. For example, in 1898, a
devastating cyclone hit the east and northeast coasts and made landfall. Reported
information about this cyclone and its destructive impacts is limited. However, its path
was recorded as from the Arabian Sea moving over Al-Wusta and Al-Dakhliya
governorates towards the middle of the Al-Batnah coastal plain (Mansour et al., 2021).
More recently, in 2007, the intense cyclone Gonu struck the northeast coast of Oman.
The cyclone was considered as the nation’s worst disaster and the most memorable
catastrophe in the Omani social (collective) memory. The cyclone caused 50 deaths and
widespread damage and destruction impacting coastal populations, majorly in the
Muscat and North Al-Sharkiya governorates. The total economic loss was estimated to
be approximately $ 4.2 billion and, in the recovery phase, it took a long time to
reconstruct damaged infrastructure and rehabilitate affected communities (Tyagi et
al.,2011). In 2010, cyclone Phet developed over the Arabian Sea and passed towards
the northeast coast of Oman causing heavy rainfall (600 mm) and high velocity winds
that affected households and infrastructure in the low lying-lands of the east Muscat
Wilayats, particularly Qurayyat. Cyclone Phet caused 24 fatalities and significant
damage estimated at $780 million (Rahimi et al., 2015).

Cyclones frequently hit not only the north and northeast Omani coasts, but also the
south and southeast low lying-lands within Al-Wusta and Dhofar governorates. In May
2018, the southern coasts of Oman experienced the intense cyclone Mekunu which
developed over the southwest Arabian Sea and battered Salalah Wilayat causing
fatalities and significant damage, particularly to coastal houses, infrastructure and
facilities (Mansour, 2019).



On 24" of September 2021, a low-pressure area developed over the Bay of Bengal and
the next day the climatic system strengthened into a tropical storm. Later, after three
days it moved out from western India into the Arabian Sea and was known as Gulab.
While Gulab struck eastern India and had a significant impact on coastal areas, the
Shaheen cyclone made a considerable landfall in the northeast coasts of Oman on 3"
October 2021. As an intense circular storm, the Shaheen cyclone was recorded as the
strongest tropical storm since the 2007 cyclone Gonu with thunderstorms, storm surges,
torrential precipitation (200 to 370 mm), excessive flooding and powerful winds (120
to 140 km h). As a result, the cyclone caused 13 deaths, household evacuations
(around 5000 households were evacuated to shelters), infrastructure damage, and severe

economic losses.

The catastrophic impacts of the Shaheen cyclone occurred predominantly across the
coastal areas of Al-Batnah plain, particularly the Al-Khabourah, Al-Swayq, Al-
Musanaah Wilayats. Mansour et al. (2021) used geospatial modelling to map the spatial
distribution of tropical cyclone risk across the northeast coast of Oman. The final map
of the developed risk index was similar to the distribution of the impacts and damage
due to the Shaheen cyclone. Despite the fact that areas located in the far east such as
Sur wilayat is significantly exposed to storms and cyclones, other coastal Wilayats in
the middle and north of Al-Batnah coastal plain, compared to internal Wilayats, are
increasingly more exposed and vulnerable to cyclones that develop over the Arabian

Sea and Indian Ocean.

Measuring community resilience to, and recovery from, the destructive impacts of
cyclones is needed to characterize the spatial variation and distribution of disaster risk
(Burton, 2015; N. Lam et al., 2016). Nonetheless, most of the conducted studies rely
on qualitative methods and mixed approaches (e.g., Pfefferbaum et al., 2013; Islam et
al., 2017; Uddin et al., 2020) and, thus, assessments of human responses and local
communities’ endeavors to restore normal life often lack measurable and quantitative
outcomes at finer spatial resolutions or are completely nonspatial (Cai et al., 2018). The
consequences of cyclones, as an extreme climatic event, not only influence the
economy of the impacted areas, but also disrupt critical daily services, facilities and
infrastructure. Accordingly, assessment of cyclone damage and recovery should be

accomplished through quantitative and spatial means.



Despite the growing body of literature surrounding cyclone resilience and recovery
globally (e.g., N. Lam et al., 2016; Qiang et al., 2020; Xu & Qiang, 2021; Sarkar, 2021),
geospatial modelling of recovery at local and intermediate scales is still rare.
Subsequently, this research attempts to bridge this gap by developing a modelling
framework of recovery, using the Shaheen Cyclone as a case study. Several
topographical, environmental and spatial determinants, as well as one global and two
local statistical models, were employed to predict the spatial variation in the cyclone
recovery pattern across the northern coasts of Oman.

The principal research aims are as follows:

= The identification of spatial, topographical, and environmental influences on
speedy recovery from cyclones.

= The evaluation of possible correlations between geographical variation in
recovery and the aforementioned influences.

= The use of NTL data and multiscale statistical modelling to understand the
implications of topographical and environmental properties for community

resilience.

The current study represents a novel attempt to examine this subject in the context of
the Gulf Cooperation Council (GCC) countries and Oman. It employs an innovative
modelling framework to evaluate spatial variation in the rate of recovery from cyclones.
The significance of this research lies in its potential to assist the development of
national preparedness and mitigation strategies, in addition to the provision of critical
data related to quantification of the fundamental determinants of achieving rapid post-

cyclone recovery at the local level.

2. Materials and methods

2.1  Study area

The study region is located north of Oman and covers an area of 22,924 km? that
includes 22 Wilayats (states) administered by six governorates, namely: Muscat, Al-
Batnah North, Al-Batnah South, Al-Dakhaliya, Al-Sharkya South and Al-Sharkya
North (Figure 1). The Muscat governorate (3,796.7 km?) contains six Wilayats, of
which five are coastal. Thus, only the Wilayat of Al-Amrat has no border with the Oman
Sea. The governorates of Al-Batnah North (7,899.3 km?) and Al-Batnah South (5,323.1

km?) are subdivided into six Wilayats each. These comprise the natural region known
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as the Al-Batnah coastal plain. Samail and Bidbid are part of the Al-Dakhaliya
governorate. In addition, Dama Watayian is located in Al-Sharkya South, whereas Sur
is situated in Al-Sharkya North. The four coastal Wilayats of Muscat, Mutruh, Bawshar
and Aseeb are located within the Muscat governorate and regarded as urban zones. The

remaining administrative units contain a mixture of urban and rural settlements.

The region examined in this research constitutes Oman’s most densely populated area.
It contains extensive urban cover and a population in 2019 of 2.9 million, thereby
representing 62.5% of the entire population of Oman (NCSI, 2019). The region is
characterized by socio-economic diversity and the population includes both native
inhabitants and migrant workers engaged in the region’s various economic, commercial
and financial activities. The socioeconomic character of this region makes it vulnerable

to the impacts of cyclones.

The coastal plain of Al-Batnah is 1 m above sea level and host to important arable land
and livestock farming activities. The physical and topographical characteristics of the
northwest section of the study zone, known as the Al-Batnah coastal plain, includes
numerous dry valley estuaries that are prone to climatic and natural hazards, not least
of which are storm surges, excessive precipitation, flooding and cyclones. This
susceptibility is exacerbated by rapid economic growth and urbanization. Economic
development in this zone has led to the concentration of disproportionate amounts of
Omani capital stocks and assets, thereby rendering it essential that modelling spatial
variation in cyclone recovery in exposed areas can guide decision-making and
contribute to the formulation of national and subnational readiness strategies, not least

for marginal communities that may be less resilient to the impacts of cyclones.

Figure 1. Location of the study area. (Upper panel) light green line indicates the Shaheen Cyclone
track. Pink polygons denote built-up areas across the coastal neighbourhoods. Light purple

polygons refer to the Wilayat (states) boundaries level.

2.2 Nighttime Light (NTL) Data

The Visible Infrared Imaging Radiometer Suite (VIIRS) was created onboard the
Suomi-National Polar-orbiting Partnership (S-NPP). It offers daily data updates
regarding the light reflected from the Earth, as recorded by the Day-Night Band (DNB)
instrument (Roman et al., 2018). The spatial resolution of the DNB layer is 500 m. In

addition, it has a radiometric resolution of 16 bits and a bandwidth range of 500 to 900



nm. The character of the VIIRS/DNB enables measurements to be taken of light from
human activities, including road lighting and cars, residential, commercial and
industrial structures (Alahmadi et al., 2021a). The National Aeronautics and Space
Administration (NASA) also created two Black Marble products (VNP46A1 and
VNP46A2) (Roman et al., 2018). The VNP46A2 product underwent additional
development with the addition of the bidirectional reflectance distribution function
(BRDF) model, designed to diminish the influence of irrelevant nighttime light sources.
However, it remained unavailable during the Shaheen Cyclone period of this research.
Therefore, the present research relied on the VNP46A1 product for five days, including
one day prior to the 5 September 2021 cyclone and four days following the cyclone.
Hence, it included the period 4 October to 7 October 2021.

2.3 Method
2.3.1 NTL image processing

The current research adopted five NTL images, each of which was processed separately
to generate first-rate NTL images that could be used to compare the situation prior to,

and following, the Shaheen Cyclone. The processing comprises two stages, as follows:

A) First-rate NTL pixels: The raw VNP46AL1 product is influenced by multiple
atmospheric variables, including clouds, moonlight and snow. These influences
can alter authentic artificial light radiance (Roman et al., 2018). For this reason,
the data require additional processing. Information pertaining to the NTL pixels
is incorporated within the QF Cloud Mask. This includes data about times,
cloud quality, cloud confidence, shadow and ice, all of which are employed to
improve the DNB layer, thereby generating superior data. Only NTL pixels
coded as confident clear (00) in the confidence indicator layer and medium (10)
and high (11) in the cloud mask quality layer were used in the analysis (Yin et
al., 2021). Subsequently, the Moon Illumination Fraction layer was deducted
from the DNB layer (Anand & Kim., 2021).

B) Low brightness NTL intensity: Unpopulated areas, including those that are
predominantly bare or covered with vegetation, tend to reflect comparatively
limited NTL intensity values, which can impact the overall findings across
substantial administrative boundaries (Alahmadi et al., 2021b). Consequently,

5 September 2021, which was the day before the cyclone struck, was employed
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C)

to filter the low radiance values. A trial-and-error method was adopted, wherein
a radiance value of 5 nWcmsr? was utilised to eliminate unpopulated NTL
pixels, in addition to establishing a preliminary mask capable of filtering low
radiances in the post-cyclone period. Subsequently, a binary mask was created
for each day (5 September 2021 and 4-7 October 2021). The masks were
superimposed to produce one mask that was then multiplied for each day. This
stage was designed to create an equal number of NTL pixels for each day.
Computing the percentage difference: After applying the above processing
steps on each day, all the raster and vector data were projected using the Albers
Equal Area projection (Alahmadi et al., 2021b). The sum of the radiance values
was computed at the eastern, subnational and neighbourhood zones. The
percentage difference of the NTL values was calculated as follows:

NTLPD; = <(M) x 100) (1)

RNTL;

Where NTLPD; denotes the NTL percentage difference (subnational and

neighborhood zones) and TNTL; are the sum of the radiance values of the target
(October 4 to 7, 2021) while RNTL; refers to the NTL values in the reference day

(September 5, 2021). Low NTLPD values are here assumed to indicate slower

recovery rate while high values signify higher recovery. For instance, large values

of NTL show greater community resilience and high socioeconomic recovery whilst

low values imply the delay in the reconstruction of physical infrastructure and

restoration of normal life.

2.3.2 Global and local modelling techniques
Global regression modeling

Ordinary Least Squares (OLS) regression is typically employed to link response
variables to predictors or explanatory variables. To estimate the parameters, the sum of
squares is minimized. From a spatial perspective, the model operates according to the
presumption that there is a predictable and unchanging relationship across the entire
study zone. For this reason, it is possible that the implied independence expectations
linked to the relevant spatial information could be inappropriate (Hutcheson, 2011,
Pohlman & Leitner, 2003). The correlation coefficient between the dependent variable
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(y) and a set of independent variables (X1, Xz, ..... xn..) is then provided. The global OLS

regression model is given as follows:
Vi = Bo + B1x1 + Baxz + Puxn + € 2)

where y;comprises the response variable observation (recovery rate) at the ith locations
(neighbourhoods), So denotes the intercept and 1 indicates the parameter estimate for

X1. Xn represents the set of explanatory variables, and ¢ signifies the residual error term.

The variance inflation factor (VIF) was adopted to check for any multicollinearity.
Overall, for every independent variable, where the VIF value exceeded 10 for any
independent variable, this was deemed to be indicative of an issue with the model
specification. Hence, such variables were eliminated (Montgomery et al., 2021). The

VIF factor is represented as:

1
VIF = — 3)

where VIF refers to the variance inflation factor while R? signifies the coefficient of

determination.
Local regression modeling
Geographically Weighted Regression (GWR)

The global OLS regression model is spatially stationary in its parameters. Hence, it is
limited to the modelling of correlations between cyclone recovery (the response
variable) and predictors (environmental, topographical, and spatial variables) with no
consideration of the effect of geographical variation in the relationship (Brunsdon et
al., 1996, Fotheringham et al., 1998). In contrast to the global regression model, GWR
is spatially non-stationary. For this reason, it can be employed to model relationships
that fluctuate spatially. This means that the model can search for spatial heterogeneity
and calculate individual local parameters for each zone (Brunsdon et al., 1996;
Fotheringham et al., 1998; Charlton et al., 2009). The GWR model can be represented

in accordance with Fotheringham et al. (2003):

Vi = Boi(uy, v) + XK1 Bri (W v) X0 + & (4)

where y; denotes the cyclone recovery at a given location or neighbourhood i, (ui, vi)
signifies the centroid of zone (neighbourhood) i, foi, fni represent the intercept and
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influence of variable n for zone i, respectively, xni represents the values of the ith
independent variables, and & is a random error term. The matrix form is written as per
Fotheringham and Oshan (2016):

Q) = (X'WDX)™ X'W () (5)

where £ specifies the vector of parameter estimates (p x 1), X denotes the matrix of the
predictor variables (n x p), W(i) encompasses the spatial weights matrix (n x n), and y
signifies the vector of observations of cyclone recovery (px1). The matrix W(i) is
created from the weights of each zone (neighbourhood) in accordance with the distance
between the matrix and the location i. The Gaussian and bisquare weighting kernels are
typically used to allow neighbourhoods in proximity to i to exercise a more significant
impact on the estimation of Sni(ui,vi) than is possible for neighbourhoods situated at a
greater distance from i. Both the bandwidth and kernel function require quantification
when the bandwidth is ascertained in accordance with the Euclidean distance and
number of proximate neighbours. Multiple diverse bandwidths can be tested to
determine the optimal neighborhood type from which to produce the local weighting
(Mollalo et al., 2020).

Multiscale Geographically Weighted Regression (MGWR)

GWR is able to identify variation in parameters spatially. However, it assumes that
spatial scale is constant. A fixed spatial scale may be inappropriate when spatial
properties encompass multiple complex processes with diverse spatial scales. In
contrast to GWR, MGWR is not dependent on the rigid assumption that all properties
exhibit a comparable, single spatial scale. In other words, MGWR permits differences
in the spatial values for localized regressions in respect of their variables. Therefore,
spatial variation can arise in the link function between the response variable and
explanatory variables, in addition to various scales that include different bandwidths
across the surface of the study zone (Fotheringham et al., 2017; Yu et al., 2019; Mollalo
et al., 2020). Furthermore, the MGWR model is superior to GWR in several respects,
the first of which is that it has the ability to reliably indicate spatial heterogeneity. It
can also reduce collinearity and decrease bias in the parameter estimates (Oshan et al.,
2019; Wolf et al., 2018). The MGWR model can be represented as:

m
yi = Z Oﬁbwj Xij + & (6)
j=
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where S indicates the bandwidths that are employed to adjust the jth conditional

relationship (Fotheringham et al., 2017).
3. Results

3.1 Spatial patterns of NTL changes and cyclone recovery

Figure 2 shows the sum of the NTL intensities over the northeast coast of Oman before
and after the Shaheen Cyclone. On September 5, 2021 the sum of the NTL intensities
was c. 245,000 nWem2sr . This value decreased by 40% to c. 158,000 nWem™srt on
October 4, 2021 as a result of the Shaheen Cyclone, which hit the Sultanate of Oman
on October 3, 2021. The Omani authorities took a set of measures to mitigate the effects
of this disaster and return eventually to normal life. These measures contributed to an
increase in the sum of NTL intensities through October 5-7, 2021 to ¢. 180,000, 190,000
and 211,000 (nWcm2srt), respectively, in comparison with October 4, 2021 (c.
158,000 nWem2sr?).

Figure 2 Sum of NTL radiances for different days at the east part of Sultanate of Oman.

The spatial variation in NTL was used as a proxy to measure local community resilience
and recovery. Figure 3 illustrates the percentage difference in the NTL brightness
spatially during the 4 days after the Shaheen cyclone across the northeast coasts of
Oman. In the second day of the cyclone (4th Oct.) the east of Muscat Wilayats,
particularly Barka, Musanaah, ASuwayq and Al-Khabourah, exhibited large NTL
disturbances and low rates of recovery. In fact, these Wilayats (specifically coastal
neighbourhoods and settlements close to the coasts) are highly populated and
characterised by a high density of infrastructure and service facilities. Similarly, NTL
disturbances were predominantly observed in the western part of Sur wilayat in the far
east. Additionally, on 5th October (the third day of the cyclone), although there was a
pronounced pattern of recovery across the internal parts of the impacted Wilayats,
coastal neighbourhoods in Musanaah, ASuwayq, and Al-Khabourah experienced a
large decrease in NTL. The majority of settlements and neighbourhoods in the east
Muscat governorate and the west of Al-Batnah plain (e.g., Bowsher Al-Seeb, and
Barka) recovered to pre-disaster conditions. Likewise, and during the fourth day of the
Shaheen cyclone, the large NTL disturbances continued predominantly in the ASuwayq
settlements, and several areas within the surrounding Wilayats continued to show a

significant decrease in NTL, particularly across Al-Khabourah in the west and
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Musanaah in the east. In these areas, coastal settlements did not recover to their normal
conditions during the four days post the cyclone and had large reductions in NTL at
both the pixel and neighbourhood levels. Conversely, the lower rates of disturbances
and changes in NTL were found primarily in the north west within Sohar and Liwa

Wilayats, as well as in Al Amrat in the east of Muscat governorate.

The hazards brought by the Shaheen cyclone in 2021 included intense rainfall and
strong winds. The cyclone was responsible for significant damage to homes, farms,
businesses and public infrastructure, particularly across the Wilayats of Al-Batnah
coastal plain. To assess spatially post-disaster recovery and resilience, we aggregated
the NTL values to the Wilayat administrative level.

Figure 3 Rapid recovery rates across the northeast coasts of Oman after the Shaheen cyclone at
pixel level (500 m). The percentages in the legend denote the differences in the NTL and were

calculated based on equation 1.

Figure 4 depicts the spatial variation in NTL decreases and disturbances at the
subnational geographic scale. The centrally located Wilayats in Al-Batinah coastal
plain (ASuwayq, Musanaah and Al-Khabourah) were the most impacted areas of the
cyclone and, thus, showed the largest NTL reductions (80% to 90%). Indeed, the large
proportion of the population who work in agriculture and fisheries is situated
disproportionally in these Wilayats. The most damaged/impacted Wilayats are located
in the central and northern parts of the coastal plain. A more extensive pattern of NTL
disturbances can be observed across the coastal Wilayats located in the middle part of
the plain. During 5th Oct., the built-up areas of these settlements continued to show
the largest NTL decreases, particularly in ASuwayq and Al-Khabourah (almost 80% to
85% of nightlight disturbance).

Figure 4 NTL reductions (%) across northeast coasts of Oman after the Shaheen cyclone (at

subnational administrative zones scale).

In contrast, the west of Al-Batnah Wilayats (e.g., Sohar and Shinas) as well as the east
of Muscat (e.g., Qurayyat) demonstrated high levels of recovery and low rates of NTL
disturbances (less than 20% reduction). As the Shaheen cyclone passed through the
middle part of the plain, Wilayats in the North Al-Batnah governorate experienced the
greatest damage and the lowest rates of recovery. During 6" and 7" Oct. all Wilayats

showed the same patterns of nightlight reductions and recovery where the central places
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exhibited large disturbances (60% to 70%). Conversely, urban and rural areas in the
northern Wilayats experienced the least damage and, thus, displayed rapid recovery,
particularly Shinas, Liwa and Sohar. During the 5 days after the cyclone, ASuwayq
wilayat continued to show the lowest rate of recovery and the largest percentages of
nightlight disturbances and reductions. This can be attributed to the passing of the

cyclone eyewall over this Wilayat.

Figure 5 shows the differences in NTL values before, during and after the cyclone. The
plot in the top panel depicts the spatial variation in NTL values where there was a
significant decrease in the central part (pixels 200 to 350). Similarly, populated
settlements in the east, particularly within Musanaah Wilayat, experienced a large
decrease in NTL (pixels 500 to 600). Figure 5 reveals that the NTL decreased most
across the central and the eastern parts of Al-Batnah coastal plain. These places are the
most intensive urban and rural areas of socioeconomic activities in northern Oman and
outside the Muscat governorate. As these places are located in the path of the cyclone
eyewall, they witnessed significant impacts on socioeconomic activities. Consequently,
the intensity of night time lights in these areas experienced the most obvious decrease
during the four days of the cyclone. In the neighbourhoods of ASuwayq, Musanaah and
Al-Khabourah Wilayats, the NTL decreased by more than 80% on the first day and by
more than 70% on the second day, while the NTL decreased by more than 60% by the
fourth day. Examining the spatial structure of the NTL dynamics, the rates of recovery
and normal life restoration increased in the west and east parts where the impacts of
windstorms and intense rainfall disturbances on infrastructure and built-up areas were
smaller. For example, most neighbourhoods of Muscat governorate experienced a small
reduction in NTL, while most coastal neighbourhoods of the west part of North Al-
Batnah governorate experienced a significant decrease in NTL according to its

proximity to the cyclone eyewall and short distances to the cyclone track.

Figure 5 Cross-section illustrating the spatial variation in NTL values across the impacted coastal

neighbourhoods before, during, and after the Shaheen cyclone.

3.2 Modelling cyclone recovery

To explore the relationships between NTL-based recovery rates and a set of explanatory
spatial factors, linear regression was applied to the whole study area. The global model

is a suitable approach for characterising the fundamental associations between NTL-
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based cyclone recovery and these spatial factors across the impacted coastal area.
Accordingly, a range of topographical, climatic and other spatial variables were
included in the regression model to determine which factors have an impact on cyclone
recovery. Figure 6 illustrates the distribution of the dependent variable (cyclone
recovery rate) across neighbourhoods while Figure 7 shows the spatial distribution of
the explanatory variables. These variables include distance to cyclone track, elevation,
distance to defence centre, distance to shelters, slope, vegetation density, distance to
valleys and distance to coastline. Table (1) illustrates the outcome of the global model.
The regression coefficients of four variables (coastline, civil defence, elevation and
cyclone track) were highly statistically significant (p-values < 0.005). The variance
inflation factor (VIF) was used as an indicator of multicollinearity. Characteristically,
a VIF value of greater than 10 demonstrates severe collinearity (Kennedy, 2003). The

VIF values of all regressors indicated low multicollinearity (VIF <1.5).

Figure 6: Distribution of the cyclone recovery rate (the dependent variable in the regressions)

within: (a) NTL pixel base (b) NTL pixels aggregated to neighbourhoods.

Figure 7 the significant independent variables of cyclone recovery: (a) distance to coasts (b)

distance to defense centers (c) elevation and (d) distance to cyclone track

Table 1 Comparison of goodness-of-fit parameters for the global and local models.

Criterion OoLS GWR MGWR
R? 0.137 0.427 0.506
Adj. R? 0.131 0.378 0.461
AlCc 2305 2091 1971

Three of the parameter estimates were negative (distance to coastline, distance to civil
defence centres and distance to cyclone track) while the positive coefficient for
elevation indicates primarily that an increase in elevation is related to an increased rate
of recovery. The coefficient estimates also indicated that elevation was the most
influential variable, followed by cyclone track and distance to civil defence.

The regression model exhibited a small adjusted R? (0.13) indicating that a very large
percentage (87%) of the spatial variance in cyclone recovery across the coastal zones
remains unexplained and is caused by unspecified covariates (Table 2). The OLS
model, which is spatially stationary, is not sufficient to characterize the underlying
relationship between the dependent variable and covariates. Therefore, a spatially non-

stationary local model was fitted.
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Table 2 Parameters of the global model (OLS)

Covariate Coefficient Std Error  t-Statistic Probability VIF
Intercept -41.08 3.72 -11.05 0.000000*

Coastline -0.00037 0.000088 -4.24 0.000030* 1.34
Civil defence -0.021 0.00044 5.99 0.000000* 1.08
Elevation 3.41 0.34 9.93 0.000000* 1.28
Cyclone Track -0.027 0.000024 6.17 0.000002* 1.01

To explore the local spatial variation in the relationships between cyclone recovery and
the explanatory variables utilised in the global model, the GWR and MGWR models
were fitted. These local models can compensate to some extent for the local missing
elements in the global regression model and provide deep local perspectives when

analysing the spatially varying relationships.

The model diagnostics of GWR reveal an increased adjusted R? and reduced AICc. The
optimal bandwidth size was found to be 849 neighbours for the coastline, civil defense
and cyclone track variables while it was 183 for elevation. Thus, the R? value of the
model increased to 0.42 while the AICc value decreased to 2091 which is significantly
smaller than that of the OLS (2305), indicating a better fit. Amongst all fitted models,
the MGWR achieved the highest adjusted R? value (0.506) and lowest AICc value
(19712).

Figure 8 depicts the spatial distribution of the GWR and MGWR coefficients for the
statistically significant regressors. The parameter estimates of the coastline covariate
vary across the neighbourhoods (Figure 8 a&b). In the GWR, the coastline variable
represents the largest values in some neighbourhoods associated with large amounts of
cyclone damage, specifically within North Al-Batnah governorate. In the MGWR,
positive values of the coastline coefficients were found across all coastal
neighbourhoods of east Muscat, South Al-Batnah, and North Al-Batnah (Figure 8b).
These places were characterized by large NTL decreases and low recovery. In both the
GWR and MGWR, the number of civil defense centres in each subnational zone was
an influential predictor in explaining the spatial variation of damage reduction and
cyclone recovery, particularly across the east of Muscat governorate (e.g., Al-Seeb) and
north Al-Batnah (e.g., Al-Khabourah) (Figure 8 c&d).

Figure 8 coefficient estimates of local models (GWR & MGWR) representing the effects of the
explanatory variables on cyclone recovery. The bandwidth values indicate the number of nearest
neighbours.
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The GWR coefficients (Figure 8 e&f) take a range of positive and negative values
across the study area. The positive GWR coefficients are located in North Al-Batnah
governorate (e.g., Al-Khabourah, Sahm, and Sohar). In contrast, the negative GWR
coefficients are found within Muscat governorate and in the far east around Sur city.
The MGWR coefficient estimates are positive and located mostly in the
neighbourhoods of South Al-Batnah and Muscat governorate. The distance to the
cyclone track was a significant predictor in describing the spatial variation of NTL-
based recovery in the study area (Figure 8 g&h). The GWR parameter estimates vary
across the study area, with the largest positive values in some neighbourhoods of east
Muscat associated with a large reduction and disturbance of NTL and, thus, low levels
of recovery. The negative GWR estimates for elevations are found mainly within the
central and northern parts of the study area, suggesting a small correlation between
recovery levels and distances to cyclone tracks in these areas. These areas include parts
of South Al-Batnah and the entire neighbourhoods of North Al-Batnah. A similar
geographical pattern arises in the map of MGWR coefficients, where the variation in
coefficients across the study area is depicted. The larger coefficients are found in the
northern neighbourhoods, predominantly Al-Khabourah Wilayat indicating a
dependence of cyclone recovery on cyclone track. This pattern shows that the proximity
to the cyclone track covariate explains the rapid recovery levels where neighbourhoods
located near the cyclone eyewall are associated with low recovery. Although
approximately all neighbourhoods located near the track of the Shaheen cyclone show
consistently small and negative statistically significant coefficients, the impacts of
distance to cyclone track in both models (GWR and MGWR) varies significantly
spatially. The relationship between y-hat of MGWR and coefficient estimates of
cyclone track and elevation (Figure 9a) indicates that larger projected NTL values are
associated with large coefficients. Correspondingly, low predicted values (MGWR y-
hat) are also associated with low coefficient of determination of coastline civil defence
(Figure 9b).

Figure 9 The associations between the MGWR coefficient estimates and predicated NTL values;
cyclone track and elevation (a), civil defence and coastline.

Figure 10 illustrates the distribution of spatial heterogeneity concerning model fitting
at the subnational level through variations in the local R? of the GWR and MGWR. The
local R? values of the GWR model were large in the central parts of the study area,
particularly the neighbourhoods of South Al-Batnah and the coastal neighbourhoods of
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North Al-Batnah (Figure 10 a). On the contrary, the local R? values were consistently
small in the eastern parts (e.g., Muscat governorates specifically Al-Seeb, Bowsher,
and Qurayyat) and in the west (e.g., Liwa and Shinas). The R? map for the MGWR
generally reveals a good fit of the model, with most values being over 0.5 across the
region. Indeed, large values were found also across the North and South Al-Batnah
governorates (Figure 10 b). Notably, the larger values of local R? were associated with
neighbourhoods characterized by large destruction and high levels of cyclone damage,
whereas the smaller coefficients of local R? (R?<0.5) of Muscat (e.g., east parts) and Al-
Sharkya governorates reveal a poorer model fit. This can probably be attributed to the
low damage and, thus, high level of rapid recovery and return to normal life. These
patterns of local R? for the GWR and MGWR models suggest that local models fit better
in some areas than others. Therefore, the relationship between the explanatory variables
and cyclone recovery is not constant over the study area. It is often the case, however,
that relationships between recovery rate and independent variables vary geographically,
and the topographical, spatial and physical covariates that support a high level of
recovery in one area may not necessarily be the same within another area. This could
be for several reasons including spatial variability and the structure of influential factors

such as distance to cyclone eyewall, resilience, and other physical conditions.

Figure 10 Coefficient of determination of GWR and MGWR models for recovery rates associated

with significant regressors across the impacted neighbourhoods

Table 3 provides the local coefficients of GWR and MGWR, including descriptive
statistics (mean, median, standard deviation and maximum). Overall, the OLS model
produced more generic patterns that hindered local spatial variation, while the two local
models (GWR and MGWR) produced accurate estimates of cyclone recovery rates

considering spatial non-stationary, structure and heterogeneity.

Table 3 Summary statistics for the GWR and MGWR parameter estimates.

GWR MGWR
Covariate Mean STD Min Median Max  Mean STD Min Median  Max
Intercept -0.071  0.312 -0.898 -0.074 0.777 0.073 0.55 -1.599  0.003 1.57
Coastline -0.119  0.163 -0.158 0.125 0.511 0.032 0.007 0.012 0.035 0.039
Civil Defence -0.23 0.451 -0.117 0.072 1.693 0.263 0.464 -0.058  0.057 1.51
Elevation 0.232 0.231 -0.457  0.299 0.631 0.101 0.004 0.092 0.103 0.104

Cyclone Track  -0.005  0.074 -0.183  0.009 0.157  0.002 0.005 -0.007  0.003 0.01
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A cross-validation procedure was implemented to gauge spatially the required number
of administrative neighbourhoods to fit the local model structure. Therefore, selecting
the adaptive kernel method, the AICs estimator was used to determine the optimal and
adaptive number of neighbouring administrative zones (Brunsdon et al., 1996). The
MGWR calibration induced a matrix of multiscale bandwidths (Table 4) which mirrors
the spatial scale of each model process. For example, the covariates of distance to
coastline (BW:849 neighbours) and distance to civil defence centre (BW:849
neighbours) operated on the same local scale in the model indicating a process that
illustrates a higher degree of spatial homogeneity. On the other hand, elevation operated
on a low local scale (BW: 183 neighbours) indicating a locally heterogeneous

relationship with cyclone recovery.

The spatial distribution of residuals over the study area can be a vital indicator of model
fit and structure. Figure 11 demonstrates the residuals of the global and local models.
Overall, the residual values of the three models, which specify how well the model fits
the data, are consistently small across all neighbourhoods of the northern and central
parts. The local models perform slightly less well in some neighbourhoods of Muscat
governorate and Sur Wilayat in the east, represented by large values (red colour)
(Figure 11 d&f). Nonetheless, the residual values of the MGWR are generally mid-
range and fall around zero, suggesting that the predicted values match closely to the
observed values of cyclone recovery, confirming the predictive power of the MGWR
model. In the same way, Figure 11 a, ¢ & e plots the fitted residuals against the
estimated values of the dependent variables in the global and local models. Although
the ranges of the predicted global and local response variables were different, the spatial
distribution reveals a random pattern of over-and-under estimation which designates

properly specified local models.

Table 4 Multiscale bandwidth for the local MGWR model

Covariate MGWR Bandwidth ENP_j Adj t-val (95%) Do D _j
Intercept 44 46.777 3.283 0.430
Coastline 849 1.223 2.048 0.970
Civil Defence 849 1.056 1.986 0.992
Elevation 183 9.659 2.803 0.664
Cyclone Track 849 1.282 2.067 0.963
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Figure 11 Spatial distribution of residuals: (b) global model, (d) GWR, (f) MGWR. The patterns
of fitted model residuals against predicted cyclone recovery: (a) global model, (c) GWR, (e)
MGWR.

4. Discussion

The aim of this research was to assess spatially the levels of post-cyclone recovery at
different scales after the Shaheen cyclone which hit the northern coasts of Oman in
October 2021. We developed an approach to quantify and model the rapid recovery
process utilising NTL data and several spatial and topographical predictors. The global
regression analysis highlighted some association between NTL-based cyclone recovery
and the physical and topographical explanatory variables. However, the local models
highlighted the spatial variation in the relationships. Hence, methodologically this
research reveals how integrating remote sensing with advanced GIS techniques can be
employed to assess cyclone damage and recovery as well as to quantify the spatial
variation in recovery rates across settlements over various geographic scales. The
outputs of the NTL analysis provide a more pronounced picture of cyclone damage and
recovery while both local models (GWR and MGWR) overcome the limitations of
global modeling over the northern coastal neighbourhoods of Oman. Moreover,
adopting the MGWR, which provided the best fit, in modelling cyclone recovery
allowed the relationship between the response and the explanatory variables to vary
over the effected neighbourhoods and thus the modelling process operated in different
spatial scales. This potential advantage reduced bias in the parameter estimates and thus

minimized the under and overfitting errors of model performance.

Spatial modelling of cyclone recovery and resilience at finer spatial resolutions and at
multiple scales is still rare. Accordingly, clear knowledge gaps were found, particularly
in terms of understanding the spatial and environmental covariates associated with the
rate of recovery post-cyclone occurrence. In addition, most existing research lacks any
geospatial modelling framework. While most research on cyclone recovery assessment
was undertaken from qualitative perspectives (e.g., Pfefferbaum et al., 2013; Uddin et
al., 2020; Islam et al.,2017) or focused on non-spatial assessment (N. Lam et al., 2016;
Moatty et al, 2021; Islam & Walkerden, 2014), there is a growing literature applying
spatial analysis and image processing to quantify geographical patterns (Jaman et al.,
2021; Cortés-Ramos et al., 2020; Ahammed & Pandey, 2021), particularly along the

cyclone prone-coasts of developing nations. Nevertheless, advanced spatial modeling
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and simulation of cyclone recovery at subnational levels, especially in developing
countries, has not been achieved yet. Indeed, cyclone recovery assessment and, more

specifically, geographic variation in recovery patterns, is largely under-researched.

In most developing countries that are susceptible to cyclones, modelling and simulating
post disaster recovery is challenging. Indeed, there are substantial barriers to effective
post-cyclone recovery particularly availability of datasets, lack of local agencies and
recovery managers, lack of national emergency and recovery systems, insufficient
computer powers and capabilities. Communities susceptible to destructive natural
disasters such as cyclones take months and even years to restore their normal
environmental and socioeconomic systems (e.g., rise in water and soil salinity,
destruction of major roads, dams, and coastal ecosystems). Thus, post-cyclone spatial
assessment of rapid recovery is potentially useful for identifying the most important
factors that affect rates of recovery in various contexts. However, little research has
been conducted regarding how spatial and environmental determinants of recovery

levels vary geographically across the cyclone-prone areas and neighbourhoods.

In this research, the spatial variation in cyclone recovery levels was influenced by a set
of topographical and climatic variables including elevation, cyclone track and distance
to civil centres. The results indicated considerable spatial heterogeneity in the
preliminary cyclone damage and recoveries across the impacted neighbourhoods. Rapid
recovery was found mainly within Muscat governorate and towards to the east as well
as in the far north, particularly across Liwa, Saham and Sohar. This pattern of rapid
recovery was associated with well-established facilities for cyclone preparedness and
recovery such as public infrastructure for relief provision and risk reduction. On the
other hand, slow recovery was found across the neighbourhoods of the central part of
Al-Batnah coastal plain, located within the most affected Wilayats (Al-Musanaah,
ASuwayq and Al-Khabourah). In these places, the cyclone eyewall passed near to
residential communities and led to severe socioeconomic and environmental disruption
including uprooted, broken and twisted date palm trees, and destroyed farms fences and
old facilities. Likewise, and along the neighbourhoods of Al-Batnah coastal plain,
particularly the central part, many kilometres of several roads were eroded and many
farms with agricultural crops were destroyed. Nevertheless, the importance of coastal
belts of date palm trees, as a natural barrier to reduce wind velocities protecting

buildings and settlements, was evidenced.
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The outcome of local models pointed to the substantial influence of proximity to civil
defence centres for short-term recovery. The coefficient estimate of this variable was
negative (-0.02) specifically in ASuwayq. Neighbourhoods within Muscat in the east
and Saham, Sohar, Liwa within North Al-Batnah governorate located in the northern
part of the study area produced large coefficient estimates (0.09 to 1.51) compared to
other neighbourhoods in the central parts. This distribution pattern seems reasonable as
most neighbourhoods in the central part of the coastal plain witnessed larger
disturbances and significant damage while most of the neighbourhoods in the east and

northern parts had large values of NTL and, thus, faster recovery.

Recovery levels were significantly associated with elevation, specifically in the interior
neighbourhoods and settlements located away from the coastline, with a low local
association between terrain and recovery in eastern areas (GWR) and northern
neighbourhoods (MGWR). The geographical difference in elevation and topography
was considered an important indicator for explaining variation in cyclone recovery
across the coastal neighbourhoods. Ultimately, areas with large GWR coefficient
estimates for this covariate are characterised by hilly and mountainous lands (e.g,
within Muscat governorate). Likewise, large coefficients are associated mainly with
significant low recovery across North Al-Batnah governorate, specifically
neighbourhoods with substantial damage and losses in the electricity sector due to

torrential rainfall and high-speed winds.

Both cyclone damage and recovery are essentially associated with physical factors,
predominately weather conditions which are considered as natural components of the
cyclone structure itself. Commonly, areas located near to cyclone tracks are severely

affected by heavy rains and high-speed winds.

The coefficient estimates for distance to cyclone track indicated that overall, the local
models identified where particular neighbourhoods were more damaged and illustrated
very low and slow levels of recovery, compared to other places located further away
from the cyclone track. The damage resultant from the Shaheen cyclone was
predominantly associated with several topographic, physical and spatial factors.
However, the topographic and climatic variables were dominant drivers in shaping the
destructive impacts across the northern coastal neighbourhoods. For example, although
the torrential precipitation flooded both the highlands and lowlands, an overflow of
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water arose from the interior mountainous hinterland, particularly through dry valleys,
towards the low-lying coastal areas and caused severe inundation and devastation.
Subsequently, neighbourhoods across these low lying areas were characterized by low
recovery and a severe decline in NTL compared to interior neighbourhoods.

In the aftermath of the Shaheen cyclone, the Omani government responded to the
impacted neighbourhoods with timely support, aid and assistance to reduce the overall
impacts. Indeed, not only the civil defense centres, but also the Omani Armed Forces
provided immediate relief, particularly across the coastal neighbourhoods of Al-Batnah
plain (ASuwayq and Al-Khabourah). Similarly, and before the day of cyclone landfall,
the early warning system served to reduce damage including through the timely

evacuation of several households in susceptible coastal areas.

This research has several policy implications. First, the predicted patterns of cyclone
recovery within local communities can provide spatial guidelines for local planners and
governors to develop a long-term disaster management plan across the most cyclone
prone areas. Second, identifying spatially the physical and topographical determinants
of cyclone recovery patterns at a fine spatial resolution not only can provide invaluable
information about cyclone resilience, but also can accurately guide governmental
preparedness and intervention pathways to identify local communities at high risk
characterized by slow recovery. Third, although the modelling process revealed that
some environmental and spatial factors such as population concentration and vegetation
density were not significant in explaining the rate of recovery, there are many avenues
for future research to develop and include additional variables in the models. Finally,
similar spatial modelling processes utilizing NTL data, as well as advanced local
models such as GWR and MGWR, can be employed within the susceptible regions in

Oman, and in cyclone-prone areas elsewhere.

The results of this study could be used to inform measures to develop a subnational risk
reduction plan to mitigate cyclone risks and increase resilience across vulnerable local
communities. Similarly, any cyclone management plan at the subnational scale should
be developed to enhance community preparedness and increase the resilience of all
susceptible settlements to cyclone risks along the north and northeast coasts of Oman.
For example, according to the findings of this research, policy-makers can develop a

national strategy for disaster management which includes knowledge of where
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communities and neighbourhoods with slow recovery are located. Such spatial
pathways can effectively strengthen institutional early warning systems across
vulnerable coastal places. Furthermore, strengthen the recovery activities by increasing
the number of civil defense facilities and emergency agencies across the exposed
coastal zones specifically across Muscat and Al-Batnah neighbourhoods should lie at

the centre of any recovery and preparedness plans.

Most studies in cyclone recovery (e.g., Horney et al.,2017; Brown et al.,2008;
Abramson et al.,2010; Miles et al., 2019) have been conducted based on non-spatial
frameworks and thus lack the advantages of including spatial driving forces as
influential factors in predicting post-disaster recovery. Therefore, comparing with the
implemented methods in other studies, our research adopts RS-NTL approach and
spatial-based machine learning which offers a proper spatial proxy to measure
community’s capacity and disaster resilience. Indeed, incorporating NTL and MGWR
model has the advantages of capturing spatiotemporal variations of the rapid recovery
and provide deeper insights upon geographical recovery patterns.

Furthermore, most existing research into national cyclone recovery evaluations have
used qualitative techniques applied to evaluate national-level conditions due to the
comparative unavailability of suitable spatial datasets. However, the availability of data
in the current study was also impeded by atmospheric conditions, not least the presence
of cloud cover. For example, it was impossible to secure an image for 3 October 2021,
which was the first day of the Shaheen cyclone. Aggregating the NTL values to small
zones rendered the research as an ecological study shaped by the scaling and zoning
configuration inherent in the data, known as the Modifiable Areal Unit Problem
(MAUP) (Openshaw, 1984; Fotheringham & Wong, 1991). This ecological issue is
linked to the unavailability of in-depth information about data pertaining to the
destruction and loss impacting ordinary households. Thus, such data were not included
in the model fitting. Nevertheless, in addition to reducing the aggregation issue, local
models can address the single bandwidth assumption and facilitate the estimation of

various optimal bandwidths.

There are various types of recovery measures which have not been included in our
analysis particularly those that are not associated directly with electricity and nighttime

lights functions in the agricultural and environmental sectors. Nevertheless, and overall,
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the agriculture pattern in Oman, similar to other desert countries, is a subsistence and
domestic farming and it is not a commercial type of agriculture. Households often own
small size land and grow some crops particularly date palm trees. Furthermore, the
agricultural lands are allocated across administrative zones where settlements, built-up
areas as well as agricultural fields are found in the same villages and areas.
Consequently, and across the study area there is no any zone which involves only
agricultural land but each area includes buildings, facilities, houses and thus electricity.
Another potential limitation is that our modelling of cyclone recovery does not quantify
other types of damages that were felt by populations and residents of coastal areas after
the cyclone. Therefore, it was not possible to measure the recovery levels in crops
harvest, and livestock, as well as fisheries. Similarly, it was difficult to assess the
recovery rates of other sectors notably damage to fences, wood roofs, gardens, house
yards, windows, doors, livestock, road networks, dams and embankments. Nonetheless,
and as the electricity is a major daily life service, the assessment of rapid cyclone
recovery through NTL provides an effective and reliable measure for planners and
decision making. Such analysis may serve as a guide to classify cyclone affected areas
and identify places and settlements that recovered faster and those that were

characterized by low rates of recovery.
5. Conclusion

Geospatial modelling of cyclone recovery has largely been under-researched and this
is due mostly to a lack of detailed relevant spatial datasets. Additionally, research
surrounding cyclone damage and recovery is mainly non-spatial, qualitative and
involves mixed methods. Studies that examine spatially the association between post-
cyclone recovery and socioeconomic, environmental and topographical factors are still
rare. Similarly, little research has been conducted on how the determinants of cyclone
recovery vary spatially, and whether proximity to institutional mitigation capacity
impacts on the rate of recovery. Thus, this research addresses the need to model post-
cyclone recovery patterns spatially utilising geospatial techniques at the local
community level. Consequently, future research could be carried out incorporating
additional socioeconomic and environmental covariates to strengthen the power of

model explanation to the spatial variations of post-cyclone recovery.
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To explore the relationships between the post- Shaheen cyclone recovery and several
socioeconomic, environmental and topographical covariates in Oman, global (OLS)
and local (GWR, MGWR) models were fitted and compared. The global model was
unable to characterizes adequately the observed spatial variation, while the local models
of the relationship between the Shaheen cyclone recovery and four topographical and
socioeconomic characteristics of neighbourhoods fitted well. The associations were,
thus, found to vary geographically. Further, the MGWR model, which provided the best
model fit, explained over 50% of the spatial pattern in cyclone recovery. The findings
of this research could serve as effective spatial guidelines for developing cyclone
preparedness plans at the local community scale. Furthermore, by identifying the spatial
patterns of post-cyclone recovery, this analysis may be of benefit for decision-makers,
governors and planners to enhance emergency response systems and reduce the risks

associated with tropical cyclones.
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