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Geospatial Modelling of Post-Cyclone Shaheen Recovery using Nighttime Light 

Data and MGWR  

Abstract 

Tropical cyclones are a highly destructive natural hazard that can cause extensive 

damage to assets and loss of life. This is especially true for the many coastal cities and 

communities that lie in their paths. Despite their significance globally, research on post-

cyclone recovery rates has generally been qualitative and, crucially, has lacked spatial 

definition. Here, we used freely available satellite nighttime light data to model 

spatially the rate of post-cyclone recovery and selected several spatial covariates 

(socioeconomic, environmental and topographical factors) to explain the rate of 

recovery. We fitted three types of regression model to characterize the relationship 

between rate of recovery and the selected covariates; one global model (linear 

regression) and two local models (geographically weighted regression, GWR, and 

multiscale geographically weighted regression, MGWR). Despite the rate of recovery 

being a challenging variable to predict, the two local models explained 42% (GWR) 

and 51% (MGWR) of the variation, compared to the global linear model which 

explained only 13% of the variation. Importantly, the local models revealed which 

covariates were explanatory at which places; information that could be crucial to 

policy-makers and local decision-makers in relation to disaster preparedness and 

recovery planning.  

Keywords: Post-Shaheen Cyclone Recovery, GIS, MGWR, Night Time Light NTL 

Data, Community Resilience 
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1. Introduction and theoretical background 

Tropical cyclones are destructive natural hazards that affect coastal areas in tropical 

regions, commonly leading to long-lasting catastrophic impacts on physical, 

socioeconomic and environmental assets, and loss of life. Cyclone impacts affect both 

the private and public sectors, particularly the transport, education and business sectors. 

The intensity of the impacts and recovery rates vary from place to place due to local 

variations in community resilience and each population’s ability to adapt to, and cope 

with, cyclone stressors (Xu & Qiang, 2021; Adger, 2000).  

Cyclone recovery, as a process, can be defined as the effort, support and assistance 

given to local communities during and after a disaster to achieve the states of 

reconstruction and rehabilitation quickly, and to rebuild any damaged infrastructure 

(Islam & Walkerden, 2014; Quarantelli, 1999; Oloruntoba et al.,2018;). During post-

disaster, the cyclone recovery stage is crucial in terms of revitalising the local economy 

and building the resilience of local communities, particularly in reconstructing 

destroyed houses, replacing damaged infrastructure and facilities, and restoring daily 

services fully (Labadie, 2008; McEntire, 2012; Gaillard et al., 2019).   

Across communities that lack vigorous capacity planning and metrics, assessment of 

post-disaster recovery progress is often quite challenging (Horney et al.,2018).   

Adaptive capacity is associated with the recovery process, and it refers to a local 

community’s capability to handle a cyclone’s most destructive components; 

predominantly storms, precipitation and high velocity winds. Similarly, the degree of 

modification and confrontation to cyclone risk is a crucial determinant of recovery and 

adaptation opportunities (Astill, 2017). The most relevant and effective sources of 

capacity are assets, governmental polices, civil defence facilities, cultural knowledge, 

social organizations and local solidarity networks (Uddin et al., 2020). Moreover, 

community capacity includes households’ abilities to utilise, exploit and benefit of 

these resources to cope with disaster impacts and reconstruct damaged assets and 

infrastructure (Gaillard, 2010).  

Spatially, cyclone recovery can be defined as the ability of each local community to 

restore and rebuild livelihoods and production systems to normal levels pre-disaster 

(Udden et al., 2021). Temporally, the period of recovery may also vary according to the 

nature of the economic sector. For example, after a cyclone agricultural activity may 
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take months or even years to be reconstructed and restored (Handmer & Hillman, 2004; 

Chhotray & Few, 2012). In contrast, the recovery progress and levels may be generally 

high in urban communities that are resilient and well-prepared compared to deprived 

urban agglomerations and rural areas. 

Seeking to facilitate a community of practice for modelling disaster recovery, Miles et 

al., (2019) suggested to increase the participation of all hazard researchers and 

modellers in disaster recovery research. This would be an effective strategy to enrich 

resources, tools and techniques of studying, modelling and simulating disaster recovery 

particularly datasets, documentation, and programming libraries. Conducting a 

literature survey of disaster recovery, Horney et al., (2017) developed a guiding 

framework of disaster recovery indicators following the Federal Emergency 

Management Agency (FEMA)’s Recovery Directorate in the United States (US). The 

findings specified that the majority of recovery indicators were well constructed and 

represented which supports post-disaster research and planning of management and 

mitigation. Similarly, and using very high-resolution satellite images, Brown et al.,2008 

developed a suite of indicators that enable monitoring and assessing rapid post-disaster 

recovery and physical rehabilitation. These remote sensing indicators involves various 

natural, environmental, and socioeconomic factors that are integrated in a reliable and 

effective tool of recovery assessment.  

Satellite sensor images, combined with other spatio-temporal data have been shown to 

be effective inputs for cyclone damage assessment. Previous studies have been largely 

restricted to non-spatial analysis of the economic impacts of cyclones (Hsiang & Jina, 

2014; Moniruzzaman, 2019; Zhou & Zhang, 2021) and the variable impacts on different 

land covers (Chen et al., 2013; Moatty et al., 2021; Shamsuzzoha et al., 2021). Recent 

studies have established the importance of incorporating geospatial techniques and 

satellite sensor imagery in cyclone damage assessment. For example, Jaman et al. 

(2021) employed satellite microwave imagery, as well as GIS-based multi-criteria 

analysis (MCA), to assess cyclone damage at a fine geographical resolution (village 

level) at Bhadrak district in Odisha State, India. The findings indicated substantial 

spatial variation in cyclone impacts and damage, particularly in the socioeconomic and 

environmental sectors. These spatial differences were attributed mainly to disparities in 

vulnerability and exposure across the study area. In another example, Cortés-Ramos et 

al. (2020) analysed the impacts of tropical cyclones on the southern tip of the Baja 
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California Peninsula, Mexico. Landsat 8 and MODIS images were used and several 

spatial indices were calculated to assess cyclone damage spatially; specifically 

vegetation damage. The results showed that there were high spatial variations of the 

severe damages caused by high velocity wind and intense rainfall. Likewise, Ahammed 

& Pandey (2021) provided a comprehensive assessment of the damage caused by 

cyclone Amphan during 15–21 May 2020 to West Bengal and Odisha states in India. 

They found that green cover and croplands were the most severely damaged, being 

affected by the cyclonic surge and heavy precipitation.  

In another foundational work, Stevenson et al., (2010) investigated the spatial variations 

of recovery from Hurricane Katrina across coastal Mississippi. Utilizing building 

permits and other statistical data, they found spatiotemporal variations of building 

environment recovery and the recovery rates were associated with damage levels as 

well as housing density and concentration. In assessing the same post-recovery 

Hurricane Katrina, Abramson et al., (2010) adopted confirmatory factor analysis using 

five measures of social role adaptation, mental and physical health, economic and 

housing stabilities.  Overall, all the indicators were significantly associated with the 

developed latent measure of recovery while social and health measures indicated higher 

associations.  

Monitoring spatiotemporal changes of dynamic phenomena and events on the Earth’s 

surface is crucial, particularly for planning and alleviating the effects of natural hazards 

and risks (Doll et al.,2006; Zhao et al.,2018; Shi et al.,2020). Geospatial techniques and 

remote sensing images have been employed extensively as effective instruments to 

monitor human activities and environmental changes on the Earth’s surface (Du  et al., 

2014; Li et al., 2016). Night-Time Lights (NTL) data in particular have great potential 

for spatial analysis and modelling of human activities, physical dynamics and 

interactions between the two (Bennett & Simth, 2017; Alahmadi et al., 2021a; 

Alahmadi et al., 2021b). Night lights (and the consequent electricity consumption) can 

be used as an indicator and proxy for community socioeconomic development and 

wellbeing (Elvidge et al., 2012; Ghosh et al., 2013; Mann et al., 2016; Mohan & Strobl, 

2017). With this argument, and over the post-disaster stage, few studies used NTL data 

and geospatial techniques have been developed to quantify and assess cyclone damage, 

community resilience and recovery spatially (e.g., Román et al., 2019; Qiang et al., 

2020; Xu & Qiang, 2021; Sarkar, 2021). However, these studies are limited by the lack 
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of adopting geospatial modelling approaches to estimate spatial variations of recovery 

rates across small neighbourhoods.   

Due to its location along three major water bodies (the Arabian/Persian Gulf, the Sea 

of Oman and the Arabian Sea), Oman is the most prone country to tropical cyclones 

amongst the countries of the Arabian Peninsula. With a long coastline (3165 km) 

stretching from Musandam in the far north to the administrative boundaries of Yemen 

in the south-west, the Omani coastal communities are exposed to devastating cyclones. 

Historically, and over the last century up to 2021, the coastal areas of Oman were hit 

by several cyclones that caused asset damage and fatalities. For example, in 1898, a 

devastating cyclone hit the east and northeast coasts and made landfall. Reported 

information about this cyclone and its destructive impacts is limited. However, its path 

was recorded as from the Arabian Sea moving over Al-Wusta and Al-Dakhliya 

governorates towards the middle of the Al-Batnah coastal plain (Mansour et al., 2021). 

More recently, in 2007, the intense cyclone Gonu struck the northeast coast of Oman. 

The cyclone was considered as the nation’s worst disaster and the most memorable 

catastrophe in the Omani social (collective) memory. The cyclone caused 50 deaths and 

widespread damage and destruction impacting coastal populations, majorly in the 

Muscat and North Al-Sharkiya governorates. The total economic loss was estimated to 

be approximately $ 4.2 billion and, in the recovery phase, it took a long time to 

reconstruct damaged infrastructure and rehabilitate affected communities (Tyagi et 

al.,2011). In 2010, cyclone Phet developed over the Arabian Sea and passed towards 

the northeast coast of Oman causing heavy rainfall (600 mm) and high velocity winds 

that affected households and infrastructure in the low lying-lands of the east Muscat 

Wilayats, particularly Qurayyat. Cyclone Phet caused 24 fatalities and significant 

damage estimated at $780 million (Rahimi et al., 2015).  

Cyclones frequently hit not only the north and northeast Omani coasts, but also the 

south and southeast low lying-lands within Al-Wusta and Dhofar governorates. In May 

2018, the southern coasts of Oman experienced the intense cyclone Mekunu which 

developed over the southwest Arabian Sea and battered Salalah Wilayat causing 

fatalities and significant damage, particularly to coastal houses, infrastructure and 

facilities (Mansour, 2019).    



7 
 

On 24th of September 2021, a low-pressure area developed over the Bay of Bengal and 

the next day the climatic system strengthened into a tropical storm. Later, after three 

days it moved out from western India into the Arabian Sea and was known as Gulab. 

While Gulab struck eastern India and had a significant impact on coastal areas, the 

Shaheen cyclone made a considerable landfall in the northeast coasts of Oman on 3rd 

October 2021. As an intense circular storm, the Shaheen cyclone was recorded as the 

strongest tropical storm since the 2007 cyclone Gonu with thunderstorms, storm surges, 

torrential precipitation (200 to 370 mm), excessive flooding and powerful winds (120 

to 140 km h-1). As a result, the cyclone caused 13 deaths, household evacuations 

(around 5000 households were evacuated to shelters), infrastructure damage, and severe 

economic losses.   

The catastrophic impacts of the Shaheen cyclone occurred predominantly across the 

coastal areas of Al-Batnah plain, particularly the Al-Khabourah, Al-Swayq, Al-

Musanaah Wilayats.  Mansour et al. (2021) used geospatial modelling to map the spatial 

distribution of tropical cyclone risk across the northeast coast of Oman. The final map 

of the developed risk index was similar to the distribution of the impacts and damage 

due to the Shaheen cyclone. Despite the fact that areas located in the far east such as 

Sur wilayat is significantly exposed to storms and cyclones, other coastal Wilayats in 

the middle and north of Al-Batnah coastal plain, compared to internal Wilayats, are 

increasingly more exposed and vulnerable to cyclones that develop over the Arabian 

Sea and Indian Ocean.      

Measuring community resilience to, and recovery from, the destructive impacts of 

cyclones is needed to characterize the spatial variation and distribution of disaster risk 

(Burton, 2015; N. Lam et al., 2016). Nonetheless, most of the conducted studies rely 

on qualitative methods and mixed approaches (e.g., Pfefferbaum et al., 2013; Islam et 

al., 2017; Uddin et al., 2020) and, thus, assessments of human responses and local 

communities’ endeavors to restore normal life often lack measurable and quantitative 

outcomes at finer spatial resolutions or are completely nonspatial (Cai et al., 2018). The 

consequences of cyclones, as an extreme climatic event, not only influence the 

economy of the impacted areas, but also disrupt critical daily services, facilities and 

infrastructure. Accordingly, assessment of cyclone damage and recovery should be 

accomplished through quantitative and spatial means.  
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Despite the growing body of literature surrounding cyclone resilience and recovery 

globally (e.g., N. Lam et al., 2016; Qiang et al., 2020; Xu & Qiang, 2021; Sarkar, 2021), 

geospatial modelling of recovery at local and intermediate scales is still rare. 

Subsequently, this research attempts to bridge this gap by developing a modelling 

framework of recovery, using the Shaheen Cyclone as a case study. Several 

topographical, environmental and spatial determinants, as well as one global and two 

local statistical models, were employed to predict the spatial variation in the cyclone 

recovery pattern across the northern coasts of Oman.  

The principal research aims are as follows: 

▪ The identification of spatial, topographical, and environmental influences on 

speedy recovery from cyclones. 

▪ The evaluation of possible correlations between geographical variation in 

recovery and the aforementioned influences. 

▪ The use of NTL data and multiscale statistical modelling to understand the 

implications of topographical and environmental properties for community 

resilience. 

The current study represents a novel attempt to examine this subject in the context of 

the Gulf Cooperation Council (GCC) countries and Oman. It employs an innovative 

modelling framework to evaluate spatial variation in the rate of recovery from cyclones. 

The significance of this research lies in its potential to assist the development of 

national preparedness and mitigation strategies, in addition to the provision of critical 

data related to quantification of the fundamental determinants of achieving rapid post-

cyclone recovery at the local level. 

2. Materials and methods 

2.1 Study area  

The study region is located north of Oman and covers an area of 22,924 km2 that 

includes 22 Wilayats (states) administered by six governorates, namely: Muscat, Al-

Batnah North, Al-Batnah South, Al-Dakhaliya, Al-Sharkya South and Al-Sharkya 

North (Figure 1). The Muscat governorate (3,796.7 km2) contains six Wilayats, of 

which five are coastal. Thus, only the Wilayat of Al-Amrat has no border with the Oman 

Sea. The governorates of Al-Batnah North (7,899.3 km2) and Al-Batnah South (5,323.1 

km2) are subdivided into six Wilayats each. These comprise the natural region known 
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as the Al-Batnah coastal plain. Samail and Bidbid are part of the Al-Dakhaliya 

governorate. In addition, Dama Watayian is located in Al-Sharkya South, whereas Sur 

is situated in Al-Sharkya North. The four coastal Wilayats of Muscat, Mutruh, Bawshar 

and Aseeb are located within the Muscat governorate and regarded as urban zones. The 

remaining administrative units contain a mixture of urban and rural settlements.   

The region examined in this research constitutes Oman’s most densely populated area. 

It contains extensive urban cover and a population in 2019 of 2.9 million, thereby 

representing 62.5% of the entire population of Oman (NCSI, 2019). The region is 

characterized by socio-economic diversity and the population includes both native 

inhabitants and migrant workers engaged in the region’s various economic, commercial 

and financial activities. The socioeconomic character of this region makes it vulnerable 

to the impacts of cyclones.    

The coastal plain of Al-Batnah is 1 m above sea level and host to important arable land 

and livestock farming activities. The physical and topographical characteristics of the 

northwest section of the study zone, known as the Al-Batnah coastal plain, includes 

numerous dry valley estuaries that are prone to climatic and natural hazards, not least 

of which are storm surges, excessive precipitation, flooding and cyclones. This 

susceptibility is exacerbated by rapid economic growth and urbanization. Economic 

development in this zone has led to the concentration of disproportionate amounts of 

Omani capital stocks and assets, thereby rendering it essential that modelling spatial 

variation in cyclone recovery in exposed areas can guide decision-making and 

contribute to the formulation of national and subnational readiness strategies, not least 

for marginal communities that may be less resilient to the impacts of cyclones. 

Figure 1. Location of the study area. (Upper panel) light green line indicates the Shaheen Cyclone 

track. Pink polygons denote built-up areas across the coastal neighbourhoods. Light purple 

polygons refer to the Wilayat (states) boundaries level.   

2.2 Nighttime Light (NTL) Data 

The Visible Infrared Imaging Radiometer Suite (VIIRS) was created onboard the 

Suomi-National Polar-orbiting Partnership (S-NPP). It offers daily data updates 

regarding the light reflected from the Earth, as recorded by the Day-Night Band (DNB) 

instrument (Roman et al., 2018). The spatial resolution of the DNB layer is 500 m. In 

addition, it has a radiometric resolution of 16 bits and a bandwidth range of 500 to 900 
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nm. The character of the VIIRS/DNB enables measurements to be taken of light from 

human activities, including road lighting and cars, residential, commercial and 

industrial structures (Alahmadi et al., 2021a). The National Aeronautics and Space 

Administration (NASA) also created two Black Marble products (VNP46A1 and 

VNP46A2) (Roman et al., 2018). The VNP46A2 product underwent additional 

development with the addition of the bidirectional reflectance distribution function 

(BRDF) model, designed to diminish the influence of irrelevant nighttime light sources. 

However, it remained unavailable during the Shaheen Cyclone period of this research. 

Therefore, the present research relied on the VNP46A1 product for five days, including 

one day prior to the 5 September 2021 cyclone and four days following the cyclone. 

Hence, it included the period 4 October to 7 October 2021.  

2.3 Method 

2.3.1 NTL image processing  

The current research adopted five NTL images, each of which was processed separately 

to generate first-rate NTL images that could be used to compare the situation prior to, 

and following, the Shaheen Cyclone. The processing comprises two stages, as follows: 

A) First-rate NTL pixels: The raw VNP46A1 product is influenced by multiple 

atmospheric variables, including clouds, moonlight and snow. These influences 

can alter authentic artificial light radiance (Roman et al., 2018). For this reason, 

the data require additional processing. Information pertaining to the NTL pixels 

is incorporated within the QF Cloud Mask. This includes data about times, 

cloud quality, cloud confidence, shadow and ice, all of which are employed to 

improve the DNB layer, thereby generating superior data. Only NTL pixels 

coded as confident clear (00) in the confidence indicator layer and medium (10) 

and high (11) in the cloud mask quality layer were used in the analysis (Yin et 

al., 2021). Subsequently, the Moon Illumination Fraction layer was deducted 

from the DNB layer (Anand & Kim., 2021).    

B) Low brightness NTL intensity: Unpopulated areas, including those that are 

predominantly bare or covered with vegetation, tend to reflect comparatively 

limited NTL intensity values, which can impact the overall findings across 

substantial administrative boundaries (Alahmadi et al., 2021b). Consequently, 

5 September 2021, which was the day before the cyclone struck, was employed 
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to filter the low radiance values. A trial-and-error method was adopted, wherein 

a radiance value of 5 nWcm-2sr-1 was utilised to eliminate unpopulated NTL 

pixels, in addition to establishing a preliminary mask capable of filtering low 

radiances in the post-cyclone period. Subsequently, a binary mask was created 

for each day (5 September 2021 and 4-7 October 2021). The masks were 

superimposed to produce one mask that was then multiplied for each day. This 

stage was designed to create an equal number of NTL pixels for each day. 

C) Computing the percentage difference: After applying the above processing 

steps on each day, all the raster and vector data were projected using the Albers 

Equal Area projection (Alahmadi et al., 2021b). The sum of the radiance values 

was computed at the eastern, subnational and neighbourhood zones. The 

percentage difference of the NTL values was calculated as follows: 

𝑁𝑇𝐿𝑃𝐷𝑖 = ((
𝑇𝑁𝑇𝐿𝑖−𝑅𝑁𝑇𝐿𝑖

𝑅𝑁𝑇𝐿𝑖
) × 100) (1) 

Where NTLPDi denotes the NTL percentage difference (subnational and 

neighborhood zones) and TNTLi are the sum of the radiance values of the target 

(October 4 to 7, 2021) while RNTLi refers to the NTL values in the reference day 

(September 5, 2021). Low NTLPD values are here assumed to indicate slower 

recovery rate while high values signify higher recovery. For instance, large values 

of NTL show greater community resilience and high socioeconomic recovery whilst 

low values imply the delay in the reconstruction of physical infrastructure and 

restoration of normal life. 

2.3.2 Global and local modelling techniques  

Global regression modeling 

Ordinary Least Squares (OLS) regression is typically employed to link response 

variables to predictors or explanatory variables. To estimate the parameters, the sum of 

squares is minimized. From a spatial perspective, the model operates according to the 

presumption that there is a predictable and unchanging relationship across the entire 

study zone. For this reason, it is possible that the implied independence expectations 

linked to the relevant spatial information could be inappropriate (Hutcheson, 2011; 

Pohlman & Leitner, 2003). The correlation coefficient between the dependent variable 
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(y) and a set of independent variables (x1, x2,….. xn..) is then provided. The global OLS 

regression model is given as follows:   

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽𝑛𝑥𝑛 + ɛ             (2) 

where yi comprises the response variable observation (recovery rate) at the ith locations 

(neighbourhoods), 𝛽0  denotes the intercept and 𝛽1 indicates the parameter estimate for 

x1. xn represents the set of explanatory variables, and ε signifies the residual error term.    

The variance inflation factor (VIF) was adopted to check for any multicollinearity. 

Overall, for every independent variable, where the VIF value exceeded 10 for any 

independent variable, this was deemed to be indicative of an issue with the model 

specification. Hence, such variables were eliminated (Montgomery et al., 2021). The 

VIF factor is represented as:  

                                                            𝑉𝐼𝐹𝐼 =
1

1−𝑅2
𝑖
                         (3)  

where VIF refers to the variance inflation factor while R2 signifies the coefficient of 

determination.  

Local regression modeling  

Geographically Weighted Regression (GWR) 

The global OLS regression model is spatially stationary in its parameters. Hence, it is 

limited to the modelling of correlations between cyclone recovery (the response 

variable) and predictors (environmental, topographical, and spatial variables) with no 

consideration of the effect of geographical variation in the relationship (Brunsdon et 

al., 1996; Fotheringham et al., 1998). In contrast to the global regression model, GWR 

is spatially non-stationary. For this reason, it can be employed to model relationships 

that fluctuate spatially. This means that the model can search for spatial heterogeneity 

and calculate individual local parameters for each zone (Brunsdon et al., 1996; 

Fotheringham et al., 1998; Charlton et al., 2009). The GWR model can be represented 

in accordance with Fotheringham et al. (2003):   

y𝑖 = 𝛽0𝑖(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑛𝑖
𝑘
𝑛=1 (𝑢𝑖, 𝑣𝑖)𝑥𝑛𝑖 + 𝜀𝑖            (4) 

where yi denotes the cyclone recovery at a given location or neighbourhood i, (ui, vi) 

signifies the centroid of zone (neighbourhood) i, β0i, βni represent the intercept and 
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influence of variable n for zone i, respectively, xni represents the values of the ith 

independent variables, and εi is a random error term. The matrix form is written as per 

Fotheringham and Oshan (2016): 

𝛽̂(𝑖) = ( 𝑿′𝑊(𝑖)𝑋)−1 𝑿′𝑊(𝑖)                           (5) 

where 𝛽̂ specifies the vector of parameter estimates (p × 1), X denotes the matrix of the 

predictor variables (n × p), W(i) encompasses the spatial weights matrix (n × n), and y 

signifies the vector of observations of cyclone recovery (p×1). The matrix W(i) is 

created from the weights of each zone (neighbourhood) in accordance with the distance 

between the matrix and the location i. The Gaussian and bisquare weighting kernels are 

typically used to allow neighbourhoods in proximity to i to exercise a more significant 

impact on the estimation of βni(ui,vi) than is possible for neighbourhoods situated at a 

greater distance from i. Both the bandwidth and kernel function require quantification 

when the bandwidth is ascertained in accordance with the Euclidean distance and 

number of proximate neighbours. Multiple diverse bandwidths can be tested to 

determine the optimal neighborhood type from which to produce the local weighting 

(Mollalo et al., 2020).    

Multiscale Geographically Weighted Regression (MGWR) 

GWR is able to identify variation in parameters spatially. However, it assumes that 

spatial scale is constant. A fixed spatial scale may be inappropriate when spatial 

properties encompass multiple complex processes with diverse spatial scales. In 

contrast to GWR, MGWR is not dependent on the rigid assumption that all properties 

exhibit a comparable, single spatial scale. In other words, MGWR permits differences 

in the spatial values for localized regressions in respect of their variables. Therefore, 

spatial variation can arise in the link function between the response variable and 

explanatory variables, in addition to various scales that include different bandwidths 

across the surface of the study zone (Fotheringham et al., 2017; Yu et al., 2019; Mollalo 

et al., 2020). Furthermore, the MGWR model is superior to GWR in several respects, 

the first of which is that it has the ability to reliably indicate spatial heterogeneity. It 

can also reduce collinearity and decrease bias in the parameter estimates (Oshan et al., 

2019; Wolf et al., 2018). The MGWR model can be represented as: 

𝑦𝑖 = ∑ 𝛽𝑏𝑤𝑗

𝑚

𝑗=0
𝑥𝑖𝑗 + 𝜀𝑖                      (6) 



14 
 

where 𝛽wj indicates the bandwidths that are employed to adjust the jth conditional 

relationship (Fotheringham et al., 2017).  

3. Results  

3.1 Spatial patterns of NTL changes and cyclone recovery 

Figure 2 shows the sum of the NTL intensities over the northeast coast of Oman before 

and after the Shaheen Cyclone. On September 5, 2021 the sum of the NTL intensities 

was c. 245,000 nWcm-2sr-1. This value decreased by 40% to c. 158,000 nWcm-2sr-1 on 

October 4, 2021 as a result of the Shaheen Cyclone, which hit the Sultanate of Oman 

on October 3, 2021. The Omani authorities took a set of measures to mitigate the effects 

of this disaster and return eventually to normal life. These measures contributed to an 

increase in the sum of NTL intensities through October 5-7, 2021 to c. 180,000, 190,000 

and 211,000 (nWcm-2sr-1), respectively, in comparison with October 4, 2021 (c. 

158,000 nWcm-2sr-1). 

Figure 2 Sum of NTL radiances for different days at the east part of Sultanate of Oman. 

The spatial variation in NTL was used as a proxy to measure local community resilience 

and recovery. Figure 3 illustrates the percentage difference in the NTL brightness 

spatially during the 4 days after the Shaheen cyclone across the northeast coasts of 

Oman. In the second day of the cyclone (4th Oct.) the east of Muscat Wilayats, 

particularly Barka, Musanaah, ASuwayq and Al-Khabourah, exhibited large NTL 

disturbances and low rates of recovery. In fact, these Wilayats (specifically coastal 

neighbourhoods and settlements close to the coasts) are highly populated and 

characterised by a high density of infrastructure and service facilities. Similarly, NTL 

disturbances were predominantly observed in the western part of Sur wilayat in the far 

east. Additionally, on 5th October (the third day of the cyclone), although there was a 

pronounced pattern of recovery across the internal parts of the impacted Wilayats, 

coastal neighbourhoods in Musanaah, ASuwayq, and Al-Khabourah experienced a 

large decrease in NTL. The majority of settlements and neighbourhoods in the east 

Muscat governorate and the west of Al-Batnah plain (e.g., Bowsher Al-Seeb, and 

Barka) recovered to pre-disaster conditions. Likewise, and during the fourth day of the 

Shaheen cyclone, the large NTL disturbances continued predominantly in the ASuwayq 

settlements, and several areas within the surrounding Wilayats continued to show a 

significant decrease in NTL, particularly across Al-Khabourah in the west and 
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Musanaah in the east. In these areas, coastal settlements did not recover to their normal 

conditions during the four days post the cyclone and had large reductions in NTL at 

both the pixel and neighbourhood levels. Conversely, the lower rates of disturbances 

and changes in NTL were found primarily in the north west within Sohar and Liwa 

Wilayats, as well as in Al Amrat in the east of Muscat governorate.  

The hazards brought by the Shaheen cyclone in 2021 included intense rainfall and 

strong winds. The cyclone was responsible for significant damage to homes, farms, 

businesses and public infrastructure, particularly across the Wilayats of Al-Batnah 

coastal plain. To assess spatially post-disaster recovery and resilience, we aggregated 

the NTL values to the Wilayat administrative level. 

Figure 3 Rapid recovery rates across the northeast coasts of Oman after the Shaheen cyclone at 

pixel level (500 m). The percentages in the legend denote the differences in the NTL and were 

calculated based on equation 1. 

Figure 4 depicts the spatial variation in NTL decreases and disturbances at the 

subnational geographic scale. The centrally located Wilayats in Al-Batinah coastal 

plain (ASuwayq, Musanaah and Al-Khabourah) were the most impacted areas of the 

cyclone and, thus, showed the largest NTL reductions (80% to 90%). Indeed, the large 

proportion of the population who work in agriculture and fisheries is situated 

disproportionally in these Wilayats.  The most damaged/impacted Wilayats are located 

in the central and northern parts of the coastal plain. A more extensive pattern of NTL 

disturbances can be observed across the coastal Wilayats located in the middle part of 

the plain.  During 5th Oct., the built-up areas of these settlements continued to show 

the largest NTL decreases, particularly in ASuwayq and Al-Khabourah (almost 80% to 

85% of nightlight disturbance). 

Figure 4 NTL reductions (%) across northeast coasts of Oman after the Shaheen cyclone (at 

subnational administrative zones scale). 

In contrast, the west of Al-Batnah Wilayats (e.g., Sohar and Shinas) as well as the east 

of Muscat (e.g., Qurayyat) demonstrated high levels of recovery and low rates of NTL 

disturbances (less than 20% reduction). As the Shaheen cyclone passed through the 

middle part of the plain, Wilayats in the North Al-Batnah governorate experienced the 

greatest damage and the lowest rates of recovery. During 6th and 7th Oct. all Wilayats 

showed the same patterns of nightlight reductions and recovery where the central places 
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exhibited large disturbances (60% to 70%). Conversely, urban and rural areas in the 

northern Wilayats experienced the least damage and, thus, displayed rapid recovery, 

particularly Shinas, Liwa and Sohar. During the 5 days after the cyclone, ASuwayq 

wilayat continued to show the lowest rate of recovery and the largest percentages of 

nightlight disturbances and reductions. This can be attributed to the passing of the 

cyclone eyewall over this Wilayat.   

Figure 5 shows the differences in NTL values before, during and after the cyclone. The 

plot in the top panel depicts the spatial variation in NTL values where there was a 

significant decrease in the central part (pixels 200 to 350). Similarly, populated 

settlements in the east, particularly within Musanaah Wilayat, experienced a large 

decrease in NTL (pixels 500 to 600).  Figure 5 reveals that the NTL decreased most 

across the central and the eastern parts of Al-Batnah coastal plain. These places are the 

most intensive urban and rural areas of socioeconomic activities in northern Oman and 

outside the Muscat governorate. As these places are located in the path of the cyclone 

eyewall, they witnessed significant impacts on socioeconomic activities. Consequently, 

the intensity of night time lights in these areas experienced the most obvious decrease 

during the four days of the cyclone. In the neighbourhoods of ASuwayq, Musanaah and 

Al-Khabourah Wilayats, the NTL decreased by more than 80% on the first day and by 

more than 70% on the second day, while the NTL decreased by more than 60% by the 

fourth day. Examining the spatial structure of the NTL dynamics, the rates of recovery 

and normal life restoration increased in the west and east parts where the impacts of 

windstorms and intense rainfall disturbances on infrastructure and built-up areas were 

smaller. For example, most neighbourhoods of Muscat governorate experienced a small 

reduction in NTL, while most coastal neighbourhoods of the west part of North Al-

Batnah governorate experienced a significant decrease in NTL according to its 

proximity to the cyclone eyewall and short distances to the cyclone track.   

Figure 5 Cross-section illustrating the spatial variation in NTL values across the impacted coastal 

neighbourhoods before, during, and after the Shaheen cyclone.  

3.2 Modelling cyclone recovery  

To explore the relationships between NTL-based recovery rates and a set of explanatory 

spatial factors, linear regression was applied to the whole study area. The global model 

is a suitable approach for characterising the fundamental associations between NTL-
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based cyclone recovery and these spatial factors across the impacted coastal area. 

Accordingly, a range of topographical, climatic and other spatial variables were 

included in the regression model to determine which factors have an impact on cyclone 

recovery. Figure 6 illustrates the distribution of the dependent variable (cyclone 

recovery rate) across neighbourhoods while Figure 7 shows the spatial distribution of 

the explanatory variables. These variables include distance to cyclone track, elevation, 

distance to defence centre, distance to shelters, slope, vegetation density, distance to 

valleys and distance to coastline. Table (1) illustrates the outcome of the global model. 

The regression coefficients of four variables (coastline, civil defence, elevation and 

cyclone track) were highly statistically significant (p-values < 0.005). The variance 

inflation factor (VIF) was used as an indicator of multicollinearity. Characteristically, 

a VIF value of greater than 10 demonstrates severe collinearity (Kennedy, 2003). The 

VIF values of all regressors indicated low multicollinearity (VIF <1.5).  

Figure 6: Distribution of the cyclone recovery rate (the dependent variable in the regressions) 

within: (a) NTL pixel base (b) NTL pixels aggregated to neighbourhoods. 

Figure 7 the significant independent variables of cyclone recovery: (a) distance to coasts (b) 

distance to defense centers (c) elevation and (d) distance to cyclone track 

 

Three of the parameter estimates were negative (distance to coastline, distance to civil 

defence centres and distance to cyclone track) while the positive coefficient for 

elevation indicates primarily that an increase in elevation is related to an increased rate 

of recovery. The coefficient estimates also indicated that elevation was the most 

influential variable, followed by cyclone track and distance to civil defence.  

The regression model exhibited a small adjusted R2 (0.13) indicating that a very large 

percentage (87%) of the spatial variance in cyclone recovery across the coastal zones 

remains unexplained and is caused by unspecified covariates (Table 2). The OLS 

model, which is spatially stationary, is not sufficient to characterize the underlying 

relationship between the dependent variable and covariates. Therefore, a spatially non-

stationary local model was fitted. 

Table 1 Comparison of goodness-of-fit parameters for the global and local models. 

Criterion  OLS GWR MGWR 

R2 0.137 0.427   0.506 

Adj. R2 0.131 0.378   0.461 

AICc  2305 2091   1971 
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To explore the local spatial variation in the relationships between cyclone recovery and 

the explanatory variables utilised in the global model, the GWR and MGWR models 

were fitted. These local models can compensate to some extent for the local missing 

elements in the global regression model and provide deep local perspectives when 

analysing the spatially varying relationships.  

The model diagnostics of GWR reveal an increased adjusted R2 and reduced AICc. The 

optimal bandwidth size was found to be 849 neighbours for the coastline, civil defense 

and cyclone track variables while it was 183 for elevation. Thus, the R2 value of the 

model increased to 0.42 while the AICc value decreased to 2091 which is significantly 

smaller than that of the OLS (2305), indicating a better fit. Amongst all fitted models, 

the MGWR achieved the highest adjusted R2 value (0.506) and lowest AICc value 

(1971). 

Figure 8 depicts the spatial distribution of the GWR and MGWR coefficients for the 

statistically significant regressors. The parameter estimates of the coastline covariate 

vary across the neighbourhoods (Figure 8 a&b). In the GWR, the coastline variable 

represents the largest values in some neighbourhoods associated with large amounts of 

cyclone damage, specifically within North Al-Batnah governorate. In the MGWR, 

positive values of the coastline coefficients were found across all coastal 

neighbourhoods of east Muscat, South Al-Batnah, and North Al-Batnah (Figure 8b). 

These places were characterized by large NTL decreases and low recovery. In both the 

GWR and MGWR, the number of civil defense centres in each subnational zone was 

an influential predictor in explaining the spatial variation of damage reduction and 

cyclone recovery, particularly across the east of Muscat governorate (e.g., Al-Seeb) and 

north Al-Batnah (e.g., Al-Khabourah) (Figure 8 c&d).   

Figure 8 coefficient estimates of local models (GWR & MGWR) representing the effects of the 

explanatory variables on cyclone recovery. The bandwidth values indicate the number of nearest 

neighbours.  

Table 2 Parameters of the global model (OLS) 

Covariate Coefficient  Std Error t-Statistic Probability  VIF  

Intercept -41.08 3.72 -11.05 0.000000*   

Coastline  -0.00037 0.000088 - 4.24 0.000030* 1.34 

Civil defence -0.021 0.00044 5.99 0.000000* 1.08 

Elevation  3.41 0.34 9.93 0.000000* 1.28 

Cyclone Track -0.027 0.000024 6.17 0.000002* 1.01 
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The GWR coefficients (Figure 8 e&f) take a range of positive and negative values 

across the study area. The positive GWR coefficients are located in North Al-Batnah 

governorate (e.g., Al-Khabourah, Sahm, and Sohar). In contrast, the negative GWR 

coefficients are found within Muscat governorate and in the far east around Sur city. 

The MGWR coefficient estimates are positive and located mostly in the 

neighbourhoods of South Al-Batnah and Muscat governorate. The distance to the 

cyclone track was a significant predictor in describing the spatial variation of NTL-

based recovery in the study area (Figure 8 g&h). The GWR parameter estimates vary 

across the study area, with the largest positive values in some neighbourhoods of east 

Muscat associated with a large reduction and disturbance of NTL and, thus, low levels 

of recovery. The negative GWR estimates for elevations are found mainly within the 

central and northern parts of the study area, suggesting a small correlation between 

recovery levels and distances to cyclone tracks in these areas. These areas include parts 

of South Al-Batnah and the entire neighbourhoods of North Al-Batnah. A similar 

geographical pattern arises in the map of MGWR coefficients, where the variation in 

coefficients across the study area is depicted. The larger coefficients are found in the 

northern neighbourhoods, predominantly Al-Khabourah Wilayat indicating a 

dependence of cyclone recovery on cyclone track. This pattern shows that the proximity 

to the cyclone track covariate explains the rapid recovery levels where neighbourhoods 

located near the cyclone eyewall are associated with low recovery. Although 

approximately all neighbourhoods located near the track of the Shaheen cyclone show 

consistently small and negative statistically significant coefficients, the impacts of 

distance to cyclone track in both models (GWR and MGWR) varies significantly 

spatially. The relationship between y-hat of MGWR and coefficient estimates of 

cyclone track and elevation (Figure 9a) indicates that larger projected NTL values are 

associated with large coefficients. Correspondingly, low predicted values (MGWR y-

hat) are also associated with low coefficient of determination of coastline civil defence 

(Figure 9b).    

Figure 9 The associations between the MGWR coefficient estimates and predicated NTL values; 

cyclone track and elevation (a), civil defence and coastline.  

Figure 10 illustrates the distribution of spatial heterogeneity concerning model fitting 

at the subnational level through variations in the local R2 of the GWR and MGWR. The 

local R2 values of the GWR model were large in the central parts of the study area, 

particularly the neighbourhoods of South Al-Batnah and the coastal neighbourhoods of 
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North Al-Batnah (Figure 10 a). On the contrary, the local R2 values were consistently 

small in the eastern parts (e.g., Muscat governorates specifically Al-Seeb, Bowsher, 

and Qurayyat) and in the west (e.g., Liwa and Shinas). The R2 map for the MGWR 

generally reveals a good fit of the model, with most values being over 0.5 across the 

region. Indeed, large values were found also across the North and South Al-Batnah 

governorates (Figure 10 b). Notably, the larger values of local R2 were associated with 

neighbourhoods characterized by large destruction and high levels of cyclone damage, 

whereas the smaller coefficients of local R2 (R2<0.5) of Muscat (e.g., east parts) and Al-

Sharkya governorates reveal a poorer model fit. This can probably be attributed to the 

low damage and, thus, high level of rapid recovery and return to normal life. These 

patterns of local R2 for the GWR and MGWR models suggest that local models fit better 

in some areas than others. Therefore, the relationship between the explanatory variables 

and cyclone recovery is not constant over the study area. It is often the case, however, 

that relationships between recovery rate and independent variables vary geographically, 

and the topographical, spatial and physical covariates that support a high level of 

recovery in one area may not necessarily be the same within another area. This could 

be for several reasons including spatial variability and the structure of influential factors 

such as distance to cyclone eyewall, resilience, and other physical conditions.  

Figure 10 Coefficient of determination of GWR and MGWR models for recovery rates associated 

with significant regressors across the impacted neighbourhoods 

Table 3 provides the local coefficients of GWR and MGWR, including descriptive 

statistics (mean, median, standard deviation and maximum). Overall, the OLS model 

produced more generic patterns that hindered local spatial variation, while the two local 

models (GWR and MGWR) produced accurate estimates of cyclone recovery rates 

considering spatial non-stationary, structure and heterogeneity.  

 

Table 3 Summary statistics for the GWR and MGWR parameter estimates. 

                                                                GWR                                                                  MGWR 

Covariate Mean STD Min Median Max Mean STD Min Median Max 

Intercept -0.071 0.312 -0.898 -0.074 0.777 0.073 0.55 -1.599 0.003 1.57 

Coastline -0.119 0.163 -0.158 0.125 0.511 0.032 0.007 0.012 0.035 0.039 

Civil Defence -0.23 0.451 -0.117 0.072 1.693 0.263 0.464 -0.058 0.057 1.51 

Elevation 0.232 0.231 -0.457 0.299 0.631 0.101 0.004 0.092 0.103 0.104 

Cyclone Track -0.005 0.074 -0.183 0.009 0.157 0.002 0.005 -0.007 0.003 0.01 
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A cross-validation procedure was implemented to gauge spatially the required number 

of administrative neighbourhoods to fit the local model structure. Therefore, selecting 

the adaptive kernel method, the AICs estimator was used to determine the optimal and 

adaptive number of neighbouring administrative zones (Brunsdon et al., 1996). The 

MGWR calibration induced a matrix of multiscale bandwidths (Table 4) which mirrors 

the spatial scale of each model process. For example, the covariates of distance to 

coastline (BW:849 neighbours) and distance to civil defence centre (BW:849 

neighbours) operated on the same local scale in the model indicating a process that 

illustrates a higher degree of spatial homogeneity. On the other hand, elevation operated 

on a low local scale (BW: 183 neighbours) indicating a locally heterogeneous 

relationship with cyclone recovery.  

The spatial distribution of residuals over the study area can be a vital indicator of model 

fit and structure. Figure 11 demonstrates the residuals of the global and local models.  

Overall, the residual values of the three models, which specify how well the model fits 

the data, are consistently small across all neighbourhoods of the northern and central 

parts. The local models perform slightly less well in some neighbourhoods of Muscat 

governorate and Sur Wilayat in the east, represented by large values (red colour) 

(Figure 11 d&f). Nonetheless, the residual values of the MGWR are generally mid-

range and fall around zero, suggesting that the predicted values match closely to the 

observed values of cyclone recovery, confirming the predictive power of the MGWR 

model. In the same way, Figure 11 a, c & e plots the fitted residuals against the 

estimated values of the dependent variables in the global and local models. Although 

the ranges of the predicted global and local response variables were different, the spatial 

distribution reveals a random pattern of over-and-under estimation which designates 

properly specified local models. 

 

 

Table 4 Multiscale bandwidth for the local MGWR model 

Covariate MGWR Bandwidth ENP_j Adj t-val (95%) Do D_j 

Intercept 44 46.777 3.283 0.430 

Coastline 849 1.223 2.048 0.970 

Civil Defence  849 1.056 1.986 0.992 

Elevation 183 9.659 2.803 0.664 

Cyclone Track 849 1.282 2.067 0.963 
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Figure 11 Spatial distribution of residuals: (b) global model, (d) GWR, (f) MGWR. The patterns 

of fitted model residuals against predicted cyclone recovery: (a) global model, (c) GWR, (e) 

MGWR. 

4. Discussion  

The aim of this research was to assess spatially the levels of post-cyclone recovery at 

different scales after the Shaheen cyclone which hit the northern coasts of Oman in 

October 2021. We developed an approach to quantify and model the rapid recovery 

process utilising NTL data and several spatial and topographical predictors. The global 

regression analysis highlighted some association between NTL-based cyclone recovery 

and the physical and topographical explanatory variables. However, the local models 

highlighted the spatial variation in the relationships. Hence, methodologically this 

research reveals how integrating remote sensing with advanced GIS techniques can be 

employed to assess cyclone damage and recovery as well as to quantify the spatial 

variation in recovery rates across settlements over various geographic scales. The 

outputs of the NTL analysis provide a more pronounced picture of cyclone damage and 

recovery while both local models (GWR and MGWR) overcome the limitations of 

global modeling over the northern coastal neighbourhoods of Oman. Moreover, 

adopting the MGWR, which provided the best fit, in modelling cyclone recovery 

allowed the relationship between the response and the explanatory variables to vary 

over the effected neighbourhoods and thus the modelling process operated in different 

spatial scales. This potential advantage reduced bias in the parameter estimates and thus 

minimized the under and overfitting errors of model performance. 

Spatial modelling of cyclone recovery and resilience at finer spatial resolutions and at 

multiple scales is still rare. Accordingly, clear knowledge gaps were found, particularly 

in terms of understanding the spatial and environmental covariates associated with the 

rate of recovery post-cyclone occurrence. In addition, most existing research lacks any 

geospatial modelling framework. While most research on cyclone recovery assessment 

was undertaken from qualitative perspectives (e.g., Pfefferbaum et al., 2013; Uddin et 

al., 2020; Islam et al.,2017) or focused on non-spatial assessment (N. Lam et al., 2016; 

Moatty et al, 2021; Islam & Walkerden, 2014), there is a growing literature applying 

spatial analysis and image processing to quantify geographical patterns (Jaman et al., 

2021; Cortés-Ramos et al., 2020; Ahammed & Pandey, 2021), particularly along the 

cyclone prone-coasts of developing nations. Nevertheless, advanced spatial modeling 
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and simulation of cyclone recovery at subnational levels, especially in developing 

countries, has not been achieved yet. Indeed, cyclone recovery assessment and, more 

specifically, geographic variation in recovery patterns, is largely under-researched. 

In most developing countries that are susceptible to cyclones, modelling and simulating 

post disaster recovery is challenging. Indeed, there are substantial barriers to effective 

post-cyclone recovery particularly availability of datasets, lack of local agencies and 

recovery managers, lack of national emergency and recovery systems, insufficient 

computer powers and capabilities. Communities susceptible to destructive natural 

disasters such as cyclones take months and even years to restore their normal 

environmental and socioeconomic systems (e.g., rise in water and soil salinity, 

destruction of major roads, dams, and coastal ecosystems). Thus, post-cyclone spatial 

assessment of rapid recovery is potentially useful for identifying the most important 

factors that affect rates of recovery in various contexts.  However, little research has 

been conducted regarding how spatial and environmental determinants of recovery 

levels vary geographically across the cyclone-prone areas and neighbourhoods.  

In this research, the spatial variation in cyclone recovery levels was influenced by a set 

of topographical and climatic variables including elevation, cyclone track and distance 

to civil centres. The results indicated considerable spatial heterogeneity in the 

preliminary cyclone damage and recoveries across the impacted neighbourhoods. Rapid 

recovery was found mainly within Muscat governorate and towards to the east as well 

as in the far north, particularly across Liwa, Saham and Sohar. This pattern of rapid 

recovery was associated with well-established facilities for cyclone preparedness and 

recovery such as public infrastructure for relief provision and risk reduction. On the 

other hand, slow recovery was found across the neighbourhoods of the central part of 

Al-Batnah coastal plain, located within the most affected Wilayats (Al-Musanaah, 

ASuwayq and Al-Khabourah). In these places, the cyclone eyewall passed near to 

residential communities and led to severe socioeconomic and environmental disruption 

including uprooted, broken and twisted date palm trees, and destroyed farms fences and 

old facilities. Likewise, and along the neighbourhoods of Al-Batnah coastal plain, 

particularly the central part, many kilometres of several roads were eroded and many 

farms with agricultural crops were destroyed. Nevertheless, the importance of coastal 

belts of date palm trees, as a natural barrier to reduce wind velocities protecting 

buildings and settlements, was evidenced.  
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The outcome of local models pointed to the substantial influence of proximity to civil 

defence centres for short-term recovery. The coefficient estimate of this variable was 

negative (-0.02) specifically in ASuwayq. Neighbourhoods within Muscat in the east 

and Saham, Sohar, Liwa within North Al-Batnah governorate located in the northern 

part of the study area produced large coefficient estimates (0.09 to 1.51) compared to 

other neighbourhoods in the central parts. This distribution pattern seems reasonable as 

most neighbourhoods in the central part of the coastal plain witnessed larger 

disturbances and significant damage while most of the neighbourhoods in the east and 

northern parts had large values of NTL and, thus, faster recovery.   

Recovery levels were significantly associated with elevation, specifically in the interior 

neighbourhoods and settlements located away from the coastline, with a low local 

association between terrain and recovery in eastern areas (GWR) and northern 

neighbourhoods  (MGWR). The geographical difference in elevation and topography 

was considered an important indicator for explaining variation in cyclone recovery 

across the coastal neighbourhoods. Ultimately, areas with large GWR coefficient 

estimates for this covariate are characterised by hilly and mountainous lands (e.g, 

within Muscat governorate). Likewise, large coefficients are associated mainly with 

significant low recovery across North Al-Batnah governorate, specifically 

neighbourhoods with substantial damage and losses in the electricity sector due to 

torrential rainfall and high-speed winds. 

Both cyclone damage and recovery are essentially associated with physical factors, 

predominately weather conditions which are considered as natural components of the 

cyclone structure itself. Commonly, areas located near to cyclone tracks are severely 

affected by heavy rains and high-speed winds.  

The coefficient estimates for distance to cyclone track indicated that overall, the local 

models identified where particular neighbourhoods were more damaged and illustrated 

very low and slow levels of recovery, compared to other places located further away 

from the cyclone track. The damage resultant from the Shaheen cyclone was 

predominantly associated with several topographic, physical and spatial factors. 

However, the topographic and climatic variables were dominant drivers in shaping the 

destructive impacts across the northern coastal neighbourhoods. For example, although 

the torrential precipitation flooded both the highlands and lowlands, an overflow of 
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water arose from the interior mountainous hinterland, particularly through dry valleys, 

towards the low-lying coastal areas and caused severe inundation and devastation. 

Subsequently, neighbourhoods across these low lying areas were characterized by low 

recovery and a severe decline in NTL compared to interior neighbourhoods.  

In the aftermath of the Shaheen cyclone, the Omani government responded to the 

impacted neighbourhoods with timely support, aid and assistance to reduce the overall 

impacts. Indeed, not only the civil defense centres, but also the Omani Armed Forces 

provided immediate relief, particularly across the coastal neighbourhoods of Al-Batnah 

plain (ASuwayq and Al-Khabourah). Similarly, and before the day of cyclone landfall, 

the early warning system served to reduce damage including through the timely 

evacuation of several households in susceptible coastal areas.   

This research has several policy implications. First, the predicted patterns of cyclone 

recovery within local communities can provide spatial guidelines for local planners and 

governors to develop a long-term disaster management plan across the most cyclone 

prone areas. Second, identifying spatially the physical and topographical determinants 

of cyclone recovery patterns at a fine spatial resolution not only can provide invaluable 

information about cyclone resilience, but also can accurately guide governmental 

preparedness and intervention pathways to identify local communities at high risk 

characterized by slow recovery. Third, although the modelling process revealed that 

some environmental and spatial factors such as population concentration and vegetation 

density were not significant in explaining the rate of recovery, there are many avenues 

for future research to develop and include additional variables in the models. Finally, 

similar spatial modelling processes utilizing NTL data, as well as advanced local 

models such as GWR and MGWR, can be employed within the susceptible regions in 

Oman, and in cyclone-prone areas elsewhere.       

The results of this study could be used to inform measures to develop a subnational risk 

reduction plan to mitigate cyclone risks and increase resilience across vulnerable local 

communities. Similarly, any cyclone management plan at the subnational scale should 

be developed to enhance community preparedness and increase the resilience of all 

susceptible settlements to cyclone risks along the north and northeast coasts of Oman. 

For example, according to the findings of this research, policy-makers can develop a 

national strategy for disaster management which includes knowledge of where 
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communities and neighbourhoods with slow recovery are located. Such spatial 

pathways can effectively strengthen institutional early warning systems across 

vulnerable coastal places. Furthermore, strengthen the recovery activities by increasing 

the number of civil defense facilities and emergency agencies across the exposed 

coastal zones specifically across Muscat and Al-Batnah neighbourhoods should lie at 

the centre of any recovery and preparedness plans.   

Most studies in cyclone recovery (e.g., Horney et al.,2017; Brown et al.,2008; 

Abramson et al.,2010; Miles et al., 2019) have been conducted based on non-spatial 

frameworks and thus lack the advantages of including spatial driving forces as 

influential factors in predicting post-disaster recovery. Therefore, comparing with the 

implemented methods in other studies, our research adopts RS-NTL approach and 

spatial-based machine learning which offers a proper spatial proxy to measure 

community’s capacity and disaster resilience. Indeed, incorporating NTL and MGWR 

model has the advantages of capturing spatiotemporal variations of the rapid recovery 

and provide deeper insights upon geographical recovery patterns.  

Furthermore, most existing research into national cyclone recovery evaluations have 

used qualitative techniques applied to evaluate national-level conditions due to the 

comparative unavailability of suitable spatial datasets. However, the availability of data 

in the current study was also impeded by atmospheric conditions, not least the presence 

of cloud cover. For example, it was impossible to secure an image for 3 October 2021, 

which was the first day of the Shaheen cyclone. Aggregating the NTL values to small 

zones rendered the research as an ecological study shaped by the scaling and zoning 

configuration inherent in the data, known as the Modifiable Areal Unit Problem 

(MAUP) (Openshaw, 1984; Fotheringham & Wong, 1991). This ecological issue is 

linked to the unavailability of in-depth information about data pertaining to the 

destruction and loss impacting ordinary households. Thus, such data were not included 

in the model fitting. Nevertheless, in addition to reducing the aggregation issue, local 

models can address the single bandwidth assumption and facilitate the estimation of 

various optimal bandwidths.  

There are various types of recovery measures which have not been included in our 

analysis particularly those that are not associated directly with electricity and nighttime 

lights functions in the agricultural and environmental sectors. Nevertheless, and overall, 
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the agriculture pattern in Oman, similar to other desert countries, is a subsistence and 

domestic farming and it is not a commercial type of agriculture. Households often own 

small size land and grow some crops particularly date palm trees. Furthermore, the 

agricultural lands are allocated across administrative zones where settlements, built-up 

areas as well as agricultural fields are found in the same villages and areas.  

Consequently, and across the study area there is no any zone which involves only 

agricultural land but each area includes buildings, facilities, houses and thus electricity. 

Another potential limitation is that our modelling of cyclone recovery does not quantify 

other types of damages that were felt by populations and residents of coastal areas after 

the cyclone. Therefore, it was not possible to measure the recovery levels in crops 

harvest, and livestock, as well as fisheries. Similarly, it was difficult to assess the 

recovery rates of other sectors notably damage to fences, wood roofs, gardens, house 

yards, windows, doors, livestock, road networks, dams and embankments. Nonetheless, 

and as the electricity is a major daily life service, the assessment of rapid cyclone 

recovery through NTL provides an effective and reliable measure for planners and 

decision making.  Such analysis may serve as a guide to classify cyclone affected areas 

and identify places and settlements that recovered faster and those that were 

characterized by low rates of recovery.  

5. Conclusion  

Geospatial modelling of cyclone recovery has largely been under-researched and this 

is due mostly to a lack of detailed relevant spatial datasets. Additionally, research 

surrounding cyclone damage and recovery is mainly non-spatial, qualitative and 

involves mixed methods. Studies that examine spatially the association between post-

cyclone recovery and socioeconomic, environmental and topographical factors are still 

rare. Similarly, little research has been conducted on how the determinants of cyclone 

recovery vary spatially, and whether proximity to institutional mitigation capacity 

impacts on the rate of recovery. Thus, this research addresses the need to model post-

cyclone recovery patterns spatially utilising geospatial techniques at the local 

community level. Consequently, future research could be carried out incorporating 

additional socioeconomic and environmental covariates to strengthen the power of 

model explanation to the spatial variations of post-cyclone recovery.   



28 
 

To explore the relationships between the post- Shaheen cyclone recovery and several 

socioeconomic, environmental and topographical covariates in Oman, global (OLS) 

and local (GWR, MGWR) models were fitted and compared. The global model was 

unable to characterizes adequately the observed spatial variation, while the local models 

of the relationship between the Shaheen cyclone recovery and four topographical and 

socioeconomic characteristics of neighbourhoods fitted well. The associations were, 

thus, found to vary geographically. Further, the MGWR model, which provided the best 

model fit, explained over 50% of the spatial pattern in cyclone recovery. The findings 

of this research could serve as effective spatial guidelines for developing cyclone 

preparedness plans at the local community scale. Furthermore, by identifying the spatial 

patterns of post-cyclone recovery, this analysis may be of benefit for decision-makers, 

governors and planners to enhance emergency response systems and reduce the risks 

associated with tropical cyclones.   
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