The University of Southampton
University of Southampton Institutional Repository

Semantic biometrics

Semantic biometrics
Semantic biometrics
Gait and face biometrics have a unique advantage in that they can be used when images are acquired at a distance and signals are at too low a resolution to be perceived by other biometrics. Given such situations, some traits can be difficult to extract automatically but can still be perceived semantically using human vision. It is contended that such semantic annotations are usable as soft biometric signatures, useful for identification tasks. Feature subset selection techniques are employed to compare the distinguishing ability of individual semantically described physical traits. Their identification ability is also explored, both in isolation and in the improvement of the recognition rates of some associated gait biometric signatures using fusion techniques.

This is the first approach to explore semantic descriptions of physiological human traits as used alone or to complement primary biometric techniques to facilitate recognition and analysis of surveillance video. Potential traits to be described are explored and justified against their psychological and practical merits. A novel dataset of semantic annotations is gathered describing subjects in two existing biometric datasets. Two applications of these semantic features and their associated biometric signatures are explored using the data gathered. We also draw on our experiments as a whole to highlight those traits thought to be most useful in assisting biometric recognition overall.

Effective analysis of surveillance data by humans relies on semantic retrieval of the data which has been enriched by semantic annotations. A manual annotation process is time-consuming and prone to error due to various factors. We explore the semantic content-based retrieval of surveillance captured subjects. Working under the premise that similarity of the chosen biometric signature implies similarity of certain semantic traits, a set of semantic retrieval experiments are performed using well established Latent Semantic Analysis techniques.
Samangooei, Sina
c380fb26-55d4-4b34-94e7-c92bbb26a40d
Samangooei, Sina
c380fb26-55d4-4b34-94e7-c92bbb26a40d
Nixon, Mark
2b5b9804-5a81-462a-82e6-92ee5fa74e12

Samangooei, Sina (2010) Semantic biometrics. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 138pp.

Record type: Thesis (Doctoral)

Abstract

Gait and face biometrics have a unique advantage in that they can be used when images are acquired at a distance and signals are at too low a resolution to be perceived by other biometrics. Given such situations, some traits can be difficult to extract automatically but can still be perceived semantically using human vision. It is contended that such semantic annotations are usable as soft biometric signatures, useful for identification tasks. Feature subset selection techniques are employed to compare the distinguishing ability of individual semantically described physical traits. Their identification ability is also explored, both in isolation and in the improvement of the recognition rates of some associated gait biometric signatures using fusion techniques.

This is the first approach to explore semantic descriptions of physiological human traits as used alone or to complement primary biometric techniques to facilitate recognition and analysis of surveillance video. Potential traits to be described are explored and justified against their psychological and practical merits. A novel dataset of semantic annotations is gathered describing subjects in two existing biometric datasets. Two applications of these semantic features and their associated biometric signatures are explored using the data gathered. We also draw on our experiments as a whole to highlight those traits thought to be most useful in assisting biometric recognition overall.

Effective analysis of surveillance data by humans relies on semantic retrieval of the data which has been enriched by semantic annotations. A manual annotation process is time-consuming and prone to error due to various factors. We explore the semantic content-based retrieval of surveillance captured subjects. Working under the premise that similarity of the chosen biometric signature implies similarity of certain semantic traits, a set of semantic retrieval experiments are performed using well established Latent Semantic Analysis techniques.

Text
thesis-final_Sina_samangooei.pdf - Other
Download (8MB)

More information

Published date: 7 May 2010
Organisations: University of Southampton

Identifiers

Local EPrints ID: 153901
URI: http://eprints.soton.ac.uk/id/eprint/153901
PURE UUID: d567d823-1241-47b4-88aa-5ddee6da60d7
ORCID for Mark Nixon: ORCID iD orcid.org/0000-0002-9174-5934

Catalogue record

Date deposited: 17 Jun 2010 14:12
Last modified: 14 Mar 2024 02:32

Export record

Contributors

Author: Sina Samangooei
Thesis advisor: Mark Nixon ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×