Laser direct-write for fabrication of three-dimensional paper-based devices
Laser direct-write for fabrication of three-dimensional paper-based devices
We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.
3296-3303
He, Peijun
2e303166-6aa5-4a09-b22e-440d96a54a9f
Katis, Ioannis
f92dfb8f-610d-4877-83f6-fd26a571df12
Eason, Robert
e38684c3-d18c-41b9-a4aa-def67283b020
Sones, Collin
9de9d8ee-d394-46a5-80b7-e341c0eed0a8
21 July 2016
He, Peijun
2e303166-6aa5-4a09-b22e-440d96a54a9f
Katis, Ioannis
f92dfb8f-610d-4877-83f6-fd26a571df12
Eason, Robert
e38684c3-d18c-41b9-a4aa-def67283b020
Sones, Collin
9de9d8ee-d394-46a5-80b7-e341c0eed0a8
He, Peijun, Katis, Ioannis, Eason, Robert and Sones, Collin
(2016)
Laser direct-write for fabrication of three-dimensional paper-based devices.
Lab on a Chip, 16, .
(doi:10.1039/c6lc00789a).
Abstract
We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.
Text
LDW for fabrication of 3D devices_clean version.pdf
- Accepted Manuscript
More information
Accepted/In Press date: 13 July 2016
e-pub ahead of print date: 13 July 2016
Published date: 21 July 2016
Organisations:
Optoelectronics Research Centre
Identifiers
Local EPrints ID: 400761
URI: http://eprints.soton.ac.uk/id/eprint/400761
ISSN: 1473-0197
PURE UUID: c7dc22f9-0fd2-4839-8fd9-133bc028af46
Catalogue record
Date deposited: 26 Sep 2016 10:40
Last modified: 15 Mar 2024 05:55
Export record
Altmetrics
Contributors
Author:
Peijun He
Author:
Ioannis Katis
Author:
Robert Eason
Author:
Collin Sones
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics