Dynamic geometry contexts for proof as explanation


Jones, K. (1995) Dynamic geometry contexts for proof as explanation. In, Healy, L. and Hoyles, C. (eds.) Justifying and Proving in School Mathematics. London, UK, Institute of Education, 142-154.

Download

Full text not available from this repository.

Description/Abstract

Providing a mathematics curriculum that makes proof accessible to school students appears to be difficult. This paper describes work carried out in a secondary school mathematics class in which students worked on tasks designed to enable them to experience the necessity of certain geometrical facts that are true in Euclidean geometry. In these tasks, the students were asked to construct figures using the dynamic geometry package Cabri-Géomètre such that each figure was invariant when any basic object used in the construction was dragged. It is argued that working on these tasks provided the students with suitable experiences to enable them to explain why these geometrical facts are necessarily true. The changing quality of the students' mathematical analysis suggests that working on suitable tasks with a dynamic geometry package may allow some students to develop an appreciation of proof as explanation.

Item Type: Book Section
Additional Information: pdf to be added
Keywords: teaching, learning, pedagogy, curriculum, appropriation, computer environments, deductive reasoning, proof, proving, dynamic geometry software, geometry, mathematical explanation, mediation of learning, quadrilaterals, secondary school
Subjects: L Education > LB Theory and practice of education > LB2361 Curriculum
L Education > LB Theory and practice of education
Divisions: University Structure - Pre August 2011 > School of Education > Mathematics and Science Education
ePrint ID: 41243
Date Deposited: 11 Aug 2006
Last Modified: 27 Mar 2014 18:26
URI: http://eprints.soton.ac.uk/id/eprint/41243

Actions (login required)

View Item View Item