The University of Southampton
University of Southampton Institutional Repository

The effect of Mach number on unstable disturbances in shock/boundary-layer interactions

The effect of Mach number on unstable disturbances in shock/boundary-layer interactions
The effect of Mach number on unstable disturbances in shock/boundary-layer interactions
The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes.
shock/boundary-layer interaction, transition
1070-6631
054104-[15pp]
Yao, Y.
686239b3-5065-414b-9056-72dffa43116c
Krishnan, L.
4eb5cfc3-d3e2-474d-a63b-e1f80de54bf6
Sandham, N.D.
0024d8cd-c788-4811-a470-57934fbdcf97
Roberts, G.T.
deaf59ac-e4ee-4fc2-accf-df0639d39368
Yao, Y.
686239b3-5065-414b-9056-72dffa43116c
Krishnan, L.
4eb5cfc3-d3e2-474d-a63b-e1f80de54bf6
Sandham, N.D.
0024d8cd-c788-4811-a470-57934fbdcf97
Roberts, G.T.
deaf59ac-e4ee-4fc2-accf-df0639d39368

Yao, Y., Krishnan, L., Sandham, N.D. and Roberts, G.T. (2007) The effect of Mach number on unstable disturbances in shock/boundary-layer interactions. Physics of Fluids, 19 (5), 054104-[15pp]. (doi:10.1063/1.2720831).

Record type: Article

Abstract

The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes.

Text
yao_et_al..pdf - Version of Record
Download (1MB)

More information

Published date: May 2007
Keywords: shock/boundary-layer interaction, transition
Organisations: Aerodynamics & Flight Mechanics

Identifiers

Local EPrints ID: 46176
URI: http://eprints.soton.ac.uk/id/eprint/46176
ISSN: 1070-6631
PURE UUID: a32dd79a-04e8-4278-973c-41e65d1cfd9c
ORCID for N.D. Sandham: ORCID iD orcid.org/0000-0002-5107-0944

Catalogue record

Date deposited: 24 May 2007
Last modified: 16 Mar 2024 03:03

Export record

Altmetrics

Contributors

Author: Y. Yao
Author: L. Krishnan
Author: N.D. Sandham ORCID iD
Author: G.T. Roberts

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×