The University of Southampton
University of Southampton Institutional Repository

Electrodynamic droplet actuation for lab on a chip system

Electrodynamic droplet actuation for lab on a chip system
Electrodynamic droplet actuation for lab on a chip system
This work presents the development of electrowetting on dielectric and liquid dielectrophoresis as a platform for chemistry, biochemistry and biophysics. These techniques, typically performed on a single planar surface offer flexibility for interfacing with liquid handling instruments and performing biological experimentation with easy access for visualisation. Technology for manipulating and mixing small volumes of liquid in microfluidic devices is also crucially important in chemical and biological protocols and Lab on a Chip devices and systems. The electrodynamic techniques developed here have rapid droplet translation speeds and bring small droplets into contact where inertial dynamics achieve rapid mixing upon coalescence.

In this work materials and fabrication processes for both electrowetting on dielectric and liquid dielectrophoresis technology have been developed and refined. The frequency, voltage and contact angle dependent behaviour of both techniques have been measured using two parallel coplanar electrodes. The frequency dependencies of electrowetting and dielectrophoretic liquid actuation indicate that these effects are high and low-frequency limits, respectively, of a complex set of forces. An electrowetting based particle mixer was developed using a custom made electrode array and the effect of varying voltage and frequency on droplet mixing was examined, with the highest efficiency mixing being achieved at 1 kHz and 110 V in about 0.55 seconds.

A composite electrodynamic technique was used to develop a reliable method for the formation of artificial lipid bilayers within microfluidic platforms for measuring basic biophysical aspects of cell membranes, for biosensing and drug discovery applications. Formation of artificial bilayer lipid membranes (BLMs) was demonstrated at the interface of aqueous droplets submerged in an organic solvent-lipid phase using the liquid dielectrophoresis methods developed in this project to control the droplet movement and bring multiple droplets into contact without coalescence. This technique provides a flexible, reconfigurable method for forming, disassembling and reforming BLMs within a microsystem under simple electronic control. BLM formation was shown to be extremely reliable and the BLMs formed were stable (with lifetimes of up to 20 hours) and therefore were suitable for electrophysiological analysis. This system was used to assess whether nanoparticle-membrane contact leads to perturbation of the membrane structure. The conductance of artificial membranes was monitored following exposure to nanoparticles using this droplet BLM system. It was demonstrated that the presence of nanoparticles with diameters between 50 and 500 nm can damage protein-free membranes at particle concentrations in the femtomolar range. The effects of particle size and surface chemistry were also investigated. It was shown that a large number of nanoparticles can translocate across a membrane, even when the surface coverage is relatively low, indicating that nanoparticles can exhibit significant cytotoxic effects.
Aghdaei, Sara
6bb71f1d-c8be-458c-a787-35336308282e
Aghdaei, Sara
6bb71f1d-c8be-458c-a787-35336308282e
Morgan, Hywel
de00d59f-a5a2-48c4-a99a-1d5dd7854174

Aghdaei, Sara (2011) Electrodynamic droplet actuation for lab on a chip system. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 145pp.

Record type: Thesis (Doctoral)

Abstract

This work presents the development of electrowetting on dielectric and liquid dielectrophoresis as a platform for chemistry, biochemistry and biophysics. These techniques, typically performed on a single planar surface offer flexibility for interfacing with liquid handling instruments and performing biological experimentation with easy access for visualisation. Technology for manipulating and mixing small volumes of liquid in microfluidic devices is also crucially important in chemical and biological protocols and Lab on a Chip devices and systems. The electrodynamic techniques developed here have rapid droplet translation speeds and bring small droplets into contact where inertial dynamics achieve rapid mixing upon coalescence.

In this work materials and fabrication processes for both electrowetting on dielectric and liquid dielectrophoresis technology have been developed and refined. The frequency, voltage and contact angle dependent behaviour of both techniques have been measured using two parallel coplanar electrodes. The frequency dependencies of electrowetting and dielectrophoretic liquid actuation indicate that these effects are high and low-frequency limits, respectively, of a complex set of forces. An electrowetting based particle mixer was developed using a custom made electrode array and the effect of varying voltage and frequency on droplet mixing was examined, with the highest efficiency mixing being achieved at 1 kHz and 110 V in about 0.55 seconds.

A composite electrodynamic technique was used to develop a reliable method for the formation of artificial lipid bilayers within microfluidic platforms for measuring basic biophysical aspects of cell membranes, for biosensing and drug discovery applications. Formation of artificial bilayer lipid membranes (BLMs) was demonstrated at the interface of aqueous droplets submerged in an organic solvent-lipid phase using the liquid dielectrophoresis methods developed in this project to control the droplet movement and bring multiple droplets into contact without coalescence. This technique provides a flexible, reconfigurable method for forming, disassembling and reforming BLMs within a microsystem under simple electronic control. BLM formation was shown to be extremely reliable and the BLMs formed were stable (with lifetimes of up to 20 hours) and therefore were suitable for electrophysiological analysis. This system was used to assess whether nanoparticle-membrane contact leads to perturbation of the membrane structure. The conductance of artificial membranes was monitored following exposure to nanoparticles using this droplet BLM system. It was demonstrated that the presence of nanoparticles with diameters between 50 and 500 nm can damage protein-free membranes at particle concentrations in the femtomolar range. The effects of particle size and surface chemistry were also investigated. It was shown that a large number of nanoparticles can translocate across a membrane, even when the surface coverage is relatively low, indicating that nanoparticles can exhibit significant cytotoxic effects.

Text
PhD_thesis_Sara_Aghdaei.pdf - Other
Download (9MB)

More information

Published date: February 2011
Organisations: University of Southampton

Identifiers

Local EPrints ID: 177577
URI: http://eprints.soton.ac.uk/id/eprint/177577
PURE UUID: 35b5376a-6889-4064-a09e-64b3b7d1ea6a
ORCID for Hywel Morgan: ORCID iD orcid.org/0000-0003-4850-5676

Catalogue record

Date deposited: 20 May 2011 10:42
Last modified: 14 Mar 2024 02:48

Export record

Contributors

Author: Sara Aghdaei
Thesis advisor: Hywel Morgan ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×