The University of Southampton
University of Southampton Institutional Repository

Microthrusters based on the T5 and T6 hollow cathodes

Microthrusters based on the T5 and T6 hollow cathodes
Microthrusters based on the T5 and T6 hollow cathodes
Small spacecraft with limited on-board resources would benefit greatly from the development of a low power, low cost microthruster able to offer propellant savings over conventional alternatives and enable higher energy missions. Such a thruster would also be beneficial in the development of all-electric spacecraft whereby the normally separate reaction control system and primary electric propulsion system were able to operate from a common propellant management system.

In recent years experiments on a T6 hollow cathode have demonstrated the possibility of such a device however the performance, in particular thrust efficiency, falls far short of what would be termed a viable thruster. Nevertheless the means by which hollow cathode discharges are able to produce thrust corresponding to very high velocity propellants is not at all understood, nor is the means by which to improve performance. The relevance of the very high energy ion signatures typical of hollow cathode discharges, synonymous with hollow cathode erosion, has
also not been established.

Indirect thrust measurements were made at the University of Southampton on two separate types of hollow cathode, derived from the T5 and T6 gridded ion thrusters, with unique design modifications, primarily of anode geometry. Testing was conducted with argon and xenon and measurements were made via a deflected pendulum micro-thrust balance and supporting architecture constructed specifically for the work. Ion energy measurements were made using a hemispherical energy analyzer in a separate experiment at NASA Jet Propulsion Laboratory on a third XIPS cathode, derived from the XIPS 25cm ion thruster, with xenon and krypton.

These measurements provided unique insight into the influence of terminal parameters such as discharge current, mass flowrate and cathode/anode geometry on thrust production and downstream ion energy distributions. Significant improvements in thrust efficiency have been made with the T5 cathode and in doing so, have taken hollow cathodes a significant step forwards as a viable and competitive propulsion technology.

An analysis of the thrust production is made, and on this basis conclusions are drawn on the existence of electrothermal, electromagnetic and electrostatic mechanisms specific to the cathode and operating regime, as well as their roll in other associated hollow cathode phenomenon. The main conclusions of the work are presented and recommendations made for future experimental work.
Grubisic, Angelo
a4cab763-bbc0-4130-af65-229ae674e8c8
Grubisic, Angelo
a4cab763-bbc0-4130-af65-229ae674e8c8
Gabriel, Stephen
ac76976d-74fd-40a0-808d-c9f68a38f259

Grubisic, Angelo (2011) Microthrusters based on the T5 and T6 hollow cathodes. University of Southampton, School of Engineering Sciences, Doctoral Thesis, 214pp.

Record type: Thesis (Doctoral)

Abstract

Small spacecraft with limited on-board resources would benefit greatly from the development of a low power, low cost microthruster able to offer propellant savings over conventional alternatives and enable higher energy missions. Such a thruster would also be beneficial in the development of all-electric spacecraft whereby the normally separate reaction control system and primary electric propulsion system were able to operate from a common propellant management system.

In recent years experiments on a T6 hollow cathode have demonstrated the possibility of such a device however the performance, in particular thrust efficiency, falls far short of what would be termed a viable thruster. Nevertheless the means by which hollow cathode discharges are able to produce thrust corresponding to very high velocity propellants is not at all understood, nor is the means by which to improve performance. The relevance of the very high energy ion signatures typical of hollow cathode discharges, synonymous with hollow cathode erosion, has
also not been established.

Indirect thrust measurements were made at the University of Southampton on two separate types of hollow cathode, derived from the T5 and T6 gridded ion thrusters, with unique design modifications, primarily of anode geometry. Testing was conducted with argon and xenon and measurements were made via a deflected pendulum micro-thrust balance and supporting architecture constructed specifically for the work. Ion energy measurements were made using a hemispherical energy analyzer in a separate experiment at NASA Jet Propulsion Laboratory on a third XIPS cathode, derived from the XIPS 25cm ion thruster, with xenon and krypton.

These measurements provided unique insight into the influence of terminal parameters such as discharge current, mass flowrate and cathode/anode geometry on thrust production and downstream ion energy distributions. Significant improvements in thrust efficiency have been made with the T5 cathode and in doing so, have taken hollow cathodes a significant step forwards as a viable and competitive propulsion technology.

An analysis of the thrust production is made, and on this basis conclusions are drawn on the existence of electrothermal, electromagnetic and electrostatic mechanisms specific to the cathode and operating regime, as well as their roll in other associated hollow cathode phenomenon. The main conclusions of the work are presented and recommendations made for future experimental work.

Text
Angelo_Grubisic_Final_PhD_Thesis.pdf - Other
Download (7MB)

More information

Published date: 14 April 2011
Organisations: University of Southampton, Astronautics Group

Identifiers

Local EPrints ID: 181509
URI: http://eprints.soton.ac.uk/id/eprint/181509
PURE UUID: 6754010e-82c3-4f08-80b3-cd47d10383c4

Catalogue record

Date deposited: 14 Jul 2011 10:55
Last modified: 14 Mar 2024 02:56

Export record

Contributors

Author: Angelo Grubisic
Thesis advisor: Stephen Gabriel

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×