The University of Southampton
University of Southampton Institutional Repository

Random-vortex-particle methods applied to broadband fan interaction noise

Random-vortex-particle methods applied to broadband fan interaction noise
Random-vortex-particle methods applied to broadband fan interaction noise
The general aim of this thesis is to investigate the suitability of a stochastic method for computational aeroacoustics, the specific objective being to devise a stochastic method to generate synthetic turbulence and combine it with the linearised Euler equations to predict broadband fan interaction noise. In modern turbofan designs broadband fan noise is a dominant source of aircraft noise, the most efficient source being the interaction between upstream turbulence and the stator vanes. The stochastic method developed to generate synthetic turbulence reproduces twodimensional isotropic turbulent flows by filtering a random field. The fillter is expressed in terms of the energy spectrum and controls the spatial properties of the synthetic turbulence. In contrast with previous work, non-Gaussian filters are developed to model more realistic energy spectra such as Liepmann and von Karman spectra. The temporal decorrelation present in turbulent flows is modelled using Langevin Equations. A standard Langevin equation and a second-order Langevin model are derived in details and validated for fan interaction noise. In contrast with classical methods to generate synthetic turbulence, random-vortex-particle methods can be extended to cope with inhomogeneous non-stationary turbulence with little modification from the formulation for homogeneous turbulence. The stochastic method is applied for first time to broadband fan interaction noise. The method is firstly validated for frozen turbulence interacting with an airfoil. The temporal decorrelation is then included in the method to assess the influence of the integral time scale on the radiated acoustic sound field. The method is also combined with an existing wake model to represent the inhomogeneous non-stationary turbulent flow found downstream of a fan. Finally, comparison with existing experimental data for an isolated airfoil in a turbulent jet demonstrates the benefits of using more realistic energy spectra
Dieste, M.
55d102e0-e09e-4305-85cb-b7f1c8b7eb2c
Dieste, M.
55d102e0-e09e-4305-85cb-b7f1c8b7eb2c
Gabard, G.
bfd82aee-20f2-4e2c-ad92-087dc8ff6ce7

Dieste, M. (2011) Random-vortex-particle methods applied to broadband fan interaction noise. University of Southampton, Insitute of Sound and Vibration, Doctoral Thesis, 218pp.

Record type: Thesis (Doctoral)

Abstract

The general aim of this thesis is to investigate the suitability of a stochastic method for computational aeroacoustics, the specific objective being to devise a stochastic method to generate synthetic turbulence and combine it with the linearised Euler equations to predict broadband fan interaction noise. In modern turbofan designs broadband fan noise is a dominant source of aircraft noise, the most efficient source being the interaction between upstream turbulence and the stator vanes. The stochastic method developed to generate synthetic turbulence reproduces twodimensional isotropic turbulent flows by filtering a random field. The fillter is expressed in terms of the energy spectrum and controls the spatial properties of the synthetic turbulence. In contrast with previous work, non-Gaussian filters are developed to model more realistic energy spectra such as Liepmann and von Karman spectra. The temporal decorrelation present in turbulent flows is modelled using Langevin Equations. A standard Langevin equation and a second-order Langevin model are derived in details and validated for fan interaction noise. In contrast with classical methods to generate synthetic turbulence, random-vortex-particle methods can be extended to cope with inhomogeneous non-stationary turbulence with little modification from the formulation for homogeneous turbulence. The stochastic method is applied for first time to broadband fan interaction noise. The method is firstly validated for frozen turbulence interacting with an airfoil. The temporal decorrelation is then included in the method to assess the influence of the integral time scale on the radiated acoustic sound field. The method is also combined with an existing wake model to represent the inhomogeneous non-stationary turbulent flow found downstream of a fan. Finally, comparison with existing experimental data for an isolated airfoil in a turbulent jet demonstrates the benefits of using more realistic energy spectra

Text
P2789.pdf - Other
Download (11MB)

More information

Published date: June 2011
Organisations: University of Southampton

Identifiers

Local EPrints ID: 192591
URI: http://eprints.soton.ac.uk/id/eprint/192591
PURE UUID: 8877fbe2-c2ea-4eb9-8819-de265779be3c

Catalogue record

Date deposited: 06 Jul 2011 11:26
Last modified: 14 Mar 2024 03:51

Export record

Contributors

Author: M. Dieste
Thesis advisor: G. Gabard

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×