Temporal, spatial, spectral and polarisation characteristics of the SAR backscatter from regenerating tropical forests
Temporal, spatial, spectral and polarisation characteristics of the SAR backscatter from regenerating tropical forests
The establishment of an accurate global carbon budget and the consequent ability to understand and predict future environmental change is dependent on knowing the strength of terrestrial sinks and sources of carbon. Regenerating tropical forests are one of the major terrestrial carbon sinks as they are found growing quickly and are sequestering carbon from the atmosphere. Total forest biomass (which includes above and below ground living mass of plants and litter) is a measure of terrestrial vegetation carbon content. It follows that to determine the strength of terrestrial carbon sinks we require information on the location, extent, biomass and biomass change of regenerating tropical forests. Near-constant cloud cover over the tropics and an insensitivity to biomass change at relatively low levels of biomass has limited the use of optical imagery but not Synthetic Aperture Radar (SAR) imagery for the provision of such information. The biophysical properties of regenerating tropical forests are related to the temporal, spatial, spectral and polarisation characteristics of SAR backscatter (σ°) and this formed the framework for this thesis. The objectives were to (i) detect biomass accumulation using the temporal characteristics of σ°, (ii) use the spatial characteristics of σ° (texture) to increase the strength of the σº/biomass relationship and (ill) use the spectral and polarisation characteristics of σ° to classify a surrogate for biomass in regenerating tropical forests (optical Landsat TM data were also included to widen the spectral analysis).
Although no biomass change was detectable using temporal σ°, a seasonal pattern in σ° for young regenerating forest was detected, as a result of changing water content in both vegetation and soil. The influence of recent rainfall was confirmed to be an important source of variation in σ°, suggesting the use of SAR data from the dry season only.
Using simulated data, seven texture measures showed potential for strengthening the σº/biomass relationship. However, when applied to real SAR data only GLCM (Grey Level Co-occurrence Matrix) derived contrast strengthened the σº/biomass relationship. The addition of GLCM-derived contrast to σ° potentially increases the accuracy of biomass estimation and mapping.
Neural networks can be used for the classification of land cover in tropical forest regions. Classification accuracy of around 80% was achieved using combined multiwavelength and multipolarisation SAR and Landsat TM bands for 4 land cover classes (pasture, mature forest, 0-5 years old regenerating forests and 6-18 years old regenerating forest).
These results demonstrated that multiwavelength and multipolarisation SAR data could provide information on the location, and extent of regenerating tropical forests. However an increase in the accuracy of biomass estimation relies on the optimal use of additional information that resides within the spatial, spectral and polarisation domains of SAR data.
Kuplich, Tatiana Mora
e6e78a38-38d7-4792-a873-f7c34d78c354
December 2001
Kuplich, Tatiana Mora
e6e78a38-38d7-4792-a873-f7c34d78c354
Curran, Paul
f4fb9ba5-0432-48a5-a351-9d75536458ee
Kuplich, Tatiana Mora
(2001)
Temporal, spatial, spectral and polarisation characteristics of the SAR backscatter from regenerating tropical forests.
University of Southampton, Department of Geography, Doctoral Thesis, 233pp.
Record type:
Thesis
(Doctoral)
Abstract
The establishment of an accurate global carbon budget and the consequent ability to understand and predict future environmental change is dependent on knowing the strength of terrestrial sinks and sources of carbon. Regenerating tropical forests are one of the major terrestrial carbon sinks as they are found growing quickly and are sequestering carbon from the atmosphere. Total forest biomass (which includes above and below ground living mass of plants and litter) is a measure of terrestrial vegetation carbon content. It follows that to determine the strength of terrestrial carbon sinks we require information on the location, extent, biomass and biomass change of regenerating tropical forests. Near-constant cloud cover over the tropics and an insensitivity to biomass change at relatively low levels of biomass has limited the use of optical imagery but not Synthetic Aperture Radar (SAR) imagery for the provision of such information. The biophysical properties of regenerating tropical forests are related to the temporal, spatial, spectral and polarisation characteristics of SAR backscatter (σ°) and this formed the framework for this thesis. The objectives were to (i) detect biomass accumulation using the temporal characteristics of σ°, (ii) use the spatial characteristics of σ° (texture) to increase the strength of the σº/biomass relationship and (ill) use the spectral and polarisation characteristics of σ° to classify a surrogate for biomass in regenerating tropical forests (optical Landsat TM data were also included to widen the spectral analysis).
Although no biomass change was detectable using temporal σ°, a seasonal pattern in σ° for young regenerating forest was detected, as a result of changing water content in both vegetation and soil. The influence of recent rainfall was confirmed to be an important source of variation in σ°, suggesting the use of SAR data from the dry season only.
Using simulated data, seven texture measures showed potential for strengthening the σº/biomass relationship. However, when applied to real SAR data only GLCM (Grey Level Co-occurrence Matrix) derived contrast strengthened the σº/biomass relationship. The addition of GLCM-derived contrast to σ° potentially increases the accuracy of biomass estimation and mapping.
Neural networks can be used for the classification of land cover in tropical forest regions. Classification accuracy of around 80% was achieved using combined multiwavelength and multipolarisation SAR and Landsat TM bands for 4 land cover classes (pasture, mature forest, 0-5 years old regenerating forests and 6-18 years old regenerating forest).
These results demonstrated that multiwavelength and multipolarisation SAR data could provide information on the location, and extent of regenerating tropical forests. However an increase in the accuracy of biomass estimation relies on the optimal use of additional information that resides within the spatial, spectral and polarisation domains of SAR data.
Text
00193840.pdf
- Other
More information
Published date: December 2001
Organisations:
University of Southampton
Identifiers
Local EPrints ID: 192777
URI: http://eprints.soton.ac.uk/id/eprint/192777
PURE UUID: d3209f57-d143-405e-9850-3b188a864913
Catalogue record
Date deposited: 12 Jul 2011 13:38
Last modified: 14 Mar 2024 03:52
Export record
Contributors
Author:
Tatiana Mora Kuplich
Thesis advisor:
Paul Curran
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics