The ?2-cohomology of hyperplane complements
The ?2-cohomology of hyperplane complements
We compute the l^2-Betti numbers of the complement of any finite collection of affine hyperplanes in complex n-space. At most one of the l^2-Betti numbers is non-zero.
301-309
Davis, Michael
b66d2e59-63a2-4de0-a1d7-a196b541af01
Januszkiewicz, Tadeusz
a29c937f-86d4-4d11-adf0-891e10933a0a
Leary, Ian J.
57bd5c53-cd99-41f9-b02a-4a512d45150e
2007
Davis, Michael
b66d2e59-63a2-4de0-a1d7-a196b541af01
Januszkiewicz, Tadeusz
a29c937f-86d4-4d11-adf0-891e10933a0a
Leary, Ian J.
57bd5c53-cd99-41f9-b02a-4a512d45150e
Davis, Michael, Januszkiewicz, Tadeusz and Leary, Ian J.
(2007)
The ?2-cohomology of hyperplane complements.
Groups, Geometry and Dynamics, 1 (3), .
(doi:10.4171/GGD/14).
Abstract
We compute the l^2-Betti numbers of the complement of any finite collection of affine hyperplanes in complex n-space. At most one of the l^2-Betti numbers is non-zero.
Text
djl_sub2.pdf
- Other
More information
Published date: 2007
Organisations:
Pure Mathematics
Identifiers
Local EPrints ID: 199405
URI: http://eprints.soton.ac.uk/id/eprint/199405
ISSN: 1661-7207
PURE UUID: 4a69b26c-aecf-4d19-8109-fbc5a3419d90
Catalogue record
Date deposited: 18 Oct 2011 15:29
Last modified: 15 Mar 2024 03:36
Export record
Altmetrics
Contributors
Author:
Michael Davis
Author:
Tadeusz Januszkiewicz
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics