Reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

Richardson, E.S., Grout, R.W., Sankaran, R. and Chen, J.H. (2009) Reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion In Proceedings of the Sixth Mediterranean Combustion Symposium. Mediterranean Combustion Symposium. 12 pp.


[img] PDF MCS6_Tau.pdf - Other
Download (450kB)


The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations of threedimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate
species can be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional flamelets. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damk¨ohler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame turbulence interactions which modify the flamelet based representation are analyzed.

Item Type: Conference or Workshop Item (Paper)
Venue - Dates: conference; fr; 2009-06-07; 2009-06-11, France, 2009-06-07 - 2009-06-11
Related URLs:
Subjects: T Technology > TP Chemical technology
Organisations: Engineering Science Unit
ePrint ID: 203199
Date :
Date Event
7 June 2009Published
Date Deposited: 14 Nov 2011 12:24
Last Modified: 18 Apr 2017 01:17
Further Information:Google Scholar

Actions (login required)

View Item View Item