Projection schemes in stochastic finite element analysis

Nair, Prasanth B. (2004) Projection schemes in stochastic finite element analysis In, Nikolaidis, Efstratios, Ghiocel, Dan M. and Singhal, Suren (eds.) Engineering design reliability handbook. CRC Press


[img] PDF nair_04a.pdf - Version of Record
Download (4MB)


In traditional computational mechanics, it is often assumed that the physical properties of the system under consideration are deterministic. This assumption of determinism forms the basis of most mathematical modeling procedures used to formulate partial differential equations (PDEs) governing the system response. In practice, however, some degere of uncertainty in characterizing virtually any engineering system is inevitable. In a structural system, deterministic characterization of the system properties and its environment may not be desirable due to several reasons, including uncertainty in the material properties due to statistically inhomogeneous microstructure, variations in nominal geometry due to manufacturing tolerances, and uncertainty in loading due to the nondeterministic nature of the operating environment. These uncertainties can be modeled within a probabilistc framework, which leads to PDEs with random coefficients and associated boundary and initial conditions governing the system dynamics. It is implicitly assumed here that uncertainty in the PDE coefficients can be described by random variables or random fields that are constrcuted using experimental data or stochastic micromechanical analysis.

Item Type: Book Section
ISBNs: 0849311802 (print)
ePrint ID: 22966
Date :
Date Event
Date Deposited: 04 Apr 2006
Last Modified: 16 Apr 2017 22:48
Further Information:Google Scholar

Actions (login required)

View Item View Item