An efficient evolutionary optimisation framework applied to turbine blade firtree root local profiles


Song, W. and Keane, A.J. (2005) An efficient evolutionary optimisation framework applied to turbine blade firtree root local profiles Structural and Multidisciplinary Optimization, 29, (5), pp. 382-390. (doi:10.1007/s00158-004-0486-9).

Download

[img] PDF song_05.pdf - Accepted Manuscript
Download (2MB)

Description/Abstract

In this paper, an efficient evolutionary optimisation of a turbine blade firtree root local profile is presented. The firtree geometry is designed using an intelligent rule-based computer-aided design system (ICAD) and analysed using an industrial-strength finite element code. A large number of geometric and mechanical constraints drawn from past experience are incorporated in the design of the model. The high computational cost associated with finding optimal designs using high-fidelity codes is addressed using a surrogate-assisted genetic algorithm. The initial surrogate model is first built based on points sampled with a design-of-experiment method. A database of designs analysed using the high-fidelity code is built and augmented while the genetic algorithm progresses. In the procedure for deciding whether the high-fidelity code should be run, a simple 3 ? principle is used instead of searching for the point with maximum expected improvement. This is combined with an appropriate ranking of the design points within the database. Some benchmark test problems are first used to illustrate the effectiveness and efficiency of the framework. When applied to the problem of local shape optimisation of a turbine blade firtree root, significant improvement is achieved using a limited computational budget.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1007/s00158-004-0486-9
ISSNs: 1615-147X (print)
Keywords: design, optimisation, stress analysis
Subjects:
ePrint ID: 23604
Date :
Date Event
2005Published
Date Deposited: 20 Mar 2006
Last Modified: 16 Apr 2017 22:44
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/23604

Actions (login required)

View Item View Item