The University of Southampton
University of Southampton Institutional Repository

Functorial Models for Petri Nets

Bruni, R., Meseguer, J., Montanari, U. and Sassone, V. (2001) Functorial Models for Petri Nets Information and Computation, 170, (2), pp. 207-236.

Record type: Article


We show that although the algebraic semantics of place/transition Petri nets under the collective token philosophy can be fully explained in terms of strictly symmetric monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory, because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment, where the operational semantics of nets yields an adjunction. This allows us to present a uniform logical description of net behaviors under both the collective and the individual token philosophies in terms of theories and theory morphisms in partial membership equational logic. Moreover, since the universal property of adjunctions guarantees that colimit constructions on nets are preserved by our algebraic models, the resulting semantic framework has good compositional properties.

PDF prenetsIandCOff.pdf - Other
Download (256kB)

More information

Published date: 2001
Keywords: prenets, petri nets processes, petri nets categorical semantics, partial membership equational logic, rewriting logic
Organisations: Web & Internet Science


Local EPrints ID: 264742
ISSN: 0890-5401
PURE UUID: 6ab715ab-82c2-4c23-9aed-f10d104fdf5a

Catalogue record

Date deposited: 25 Oct 2007
Last modified: 18 Jul 2017 07:33

Export record


Author: R. Bruni
Author: J. Meseguer
Author: U. Montanari
Author: V. Sassone

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.