The University of Southampton
University of Southampton Institutional Repository

Modeling of complex-valued Wiener systems using B-spline neural network

Modeling of complex-valued Wiener systems using B-spline neural network
Modeling of complex-valued Wiener systems using B-spline neural network
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate Bspline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss–Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
818-825
Hong, Xia
e6551bb3-fbc0-4990-935e-43b706d8c679
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Hong, Xia
e6551bb3-fbc0-4990-935e-43b706d8c679
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80

Hong, Xia and Chen, Sheng (2011) Modeling of complex-valued Wiener systems using B-spline neural network. IEEE Transactions on Neural Networks, 22 (5), 818-825.

Record type: Article

Abstract

In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate Bspline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss–Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.

Text
tnn-2011-5.pdf - Version of Record
Download (532kB)

More information

Published date: May 2011
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 272266
URI: http://eprints.soton.ac.uk/id/eprint/272266
PURE UUID: fb264e83-ebbb-4e6c-8072-e89dc960e9f7

Catalogue record

Date deposited: 09 May 2011 14:05
Last modified: 14 Mar 2024 09:51

Export record

Contributors

Author: Xia Hong
Author: Sheng Chen

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×