Hilbert space compression and exactness of discrete groups
Hilbert space compression and exactness of discrete groups
We show that the Hilbert space compression of any (unbounded) finite-dimensional CAT(0) cube complex is 1 and deduce that any finitely generated group acting properly, co-compactly on a CAT(0) cube complex is exact, and hence has Yu's Property A. The class of groups covered by this theorem includes free groups, finitely generated Coxeter groups, finitely generated right angled Artin groups, finitely presented groups satisfying the B(4)–T(4) small cancellation condition and all those word-hyperbolic groups satisfying the B(6) condition. Another family of examples is provided by certain canonical surgeries defined by link diagrams.
exactness, Hilbert space compression, CAT(0) cube complex, property A
292-305
Campbell, Sarah
e6d6f15a-72d1-4397-9ff4-c89fae2cd440
Niblo, Graham A.
43fe9561-c483-4cdf-bee5-0de388b78944
2005
Campbell, Sarah
e6d6f15a-72d1-4397-9ff4-c89fae2cd440
Niblo, Graham A.
43fe9561-c483-4cdf-bee5-0de388b78944
Campbell, Sarah and Niblo, Graham A.
(2005)
Hilbert space compression and exactness of discrete groups.
Journal of Functional Analysis, 222 (2), .
(doi:10.1016/j.jfa.2005.01.012).
Abstract
We show that the Hilbert space compression of any (unbounded) finite-dimensional CAT(0) cube complex is 1 and deduce that any finitely generated group acting properly, co-compactly on a CAT(0) cube complex is exact, and hence has Yu's Property A. The class of groups covered by this theorem includes free groups, finitely generated Coxeter groups, finitely generated right angled Artin groups, finitely presented groups satisfying the B(4)–T(4) small cancellation condition and all those word-hyperbolic groups satisfying the B(6) condition. Another family of examples is provided by certain canonical surgeries defined by link diagrams.
Text
Exactnessrevised.pdf
- Accepted Manuscript
More information
Published date: 2005
Keywords:
exactness, Hilbert space compression, CAT(0) cube complex, property A
Identifiers
Local EPrints ID: 29821
URI: http://eprints.soton.ac.uk/id/eprint/29821
ISSN: 0022-1236
PURE UUID: 4604dbfa-2250-424d-a071-ca5dfc2bd4b6
Catalogue record
Date deposited: 11 May 2006
Last modified: 16 Mar 2024 02:44
Export record
Altmetrics
Contributors
Author:
Sarah Campbell
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics