Minimal cubings
Minimal cubings
We combine ideas of Scott and Swarup on good position for almost invariant subsets of a group with ideas of Sageev on constructing cubings from such sets. We construct cubings which are more canonical than in Sageev's original construction. We also show that almost invariant sets can be chosen to be in very good position.
343-366
Niblo, Graham
43fe9561-c483-4cdf-bee5-0de388b78944
Sageev, Michah
9ec962d6-63c0-4435-a816-aa9b54e5f81a
Scott, Peter
3a25962b-85f6-4bec-a588-11bbdd4ec148
Swarup, Gadde A.
71b1e88f-0875-4432-a00a-918f3d0a30fd
April 2005
Niblo, Graham
43fe9561-c483-4cdf-bee5-0de388b78944
Sageev, Michah
9ec962d6-63c0-4435-a816-aa9b54e5f81a
Scott, Peter
3a25962b-85f6-4bec-a588-11bbdd4ec148
Swarup, Gadde A.
71b1e88f-0875-4432-a00a-918f3d0a30fd
Niblo, Graham, Sageev, Michah, Scott, Peter and Swarup, Gadde A.
(2005)
Minimal cubings.
International Journal of Algebra and Computation, 15 (2), .
(doi:10.1142/S0218196705002347).
Abstract
We combine ideas of Scott and Swarup on good position for almost invariant subsets of a group with ideas of Sageev on constructing cubings from such sets. We construct cubings which are more canonical than in Sageev's original construction. We also show that almost invariant sets can be chosen to be in very good position.
Text
cubingssubmitted.pdf
- Other
More information
Published date: April 2005
Identifiers
Local EPrints ID: 29823
URI: http://eprints.soton.ac.uk/id/eprint/29823
ISSN: 0218-1967
PURE UUID: 48429c82-e85a-41f9-babb-f6a2411f1593
Catalogue record
Date deposited: 11 May 2006
Last modified: 16 Mar 2024 02:44
Export record
Altmetrics
Contributors
Author:
Michah Sageev
Author:
Peter Scott
Author:
Gadde A. Swarup
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics