The University of Southampton
University of Southampton Institutional Repository

Circuit-level modelling and simulation of carbon nanotube devices

Circuit-level modelling and simulation of carbon nanotube devices
Circuit-level modelling and simulation of carbon nanotube devices
The growing academic interest in carbon nanotubes (CNTs) as a promising novel class of electronic materials has led to significant progress in the understanding of CNT physics including ballistic and non-ballistic electron transport characteristics. Together with the increasing amount of theoretical analysis and experimental studies into the properties of CNT transistors, the need for corresponding modelling techniques has also grown rapidly. This research is focused on the electron transport characteristics of CNT transistors, with the aim to develop efficient techniques
to model and simulate CNT devices for logic circuit analysis.

The contributions of this research can be summarised as follows. Firstly, to accelerate the evaluation of the equations that model a CNT transistor, while maintaining high modelling accuracy, three efficient numerical techniques based on piece-wise linear, quadratic polynomial and cubic spline approximation have been developed. The numerical approximation simplifies the solution of the CNT transistor’s self-consistent voltage such that the calculation of the drain-source current is accelerated by at least two orders of magnitude. The numerical approach eliminates complicated calculations in the modelling process and facilitates the development of fast and efficient CNT transistor models for circuit simulation.

Secondly, non-ballistic CNT transistors have been considered, and extended circuit-level models which can capture both ballistic and non-ballistic electron transport phenomena, including elastic scattering, phonon scattering, strain and tunnelling effects, have been developed. A salient feature of the developed models is their ability to incorporate both ballistic and non-ballistic transport mechanisms without a significant computational cost. The developed models have been extensively validated against reported transport theories of CNT transistors and experimental results.

Thirdly, the proposed carbon nanotube transistor models have been implemented on several platforms. The underlying algorithms have been developed and tested in MATLAB, behaviourallevel models in VHDL-AMS, and improved circuit-level models have been implemented in two versions of the SPICE simulator. As the final contribution of this work, parameter variation analysis has been carried out in SPICE3 to study the performance of the proposed circuit-level CNT transistor models in logic circuit analysis. Typical circuits, including inverters and adders, have been analysed to determine the dependence of the circuit’s correct operation on CNT parameter variation.
Zhou, Dafeng
a55b344c-799c-4577-949c-f4f5ccaec9bf
Zhou, Dafeng
a55b344c-799c-4577-949c-f4f5ccaec9bf
Al-Hashimi, Bashir M.
0b29c671-a6d2-459c-af68-c4614dce3b5d
Kazmierski, T.
a97d7958-40c3-413f-924d-84545216092a

Zhou, Dafeng (2010) Circuit-level modelling and simulation of carbon nanotube devices. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 175pp.

Record type: Thesis (Doctoral)

Abstract

The growing academic interest in carbon nanotubes (CNTs) as a promising novel class of electronic materials has led to significant progress in the understanding of CNT physics including ballistic and non-ballistic electron transport characteristics. Together with the increasing amount of theoretical analysis and experimental studies into the properties of CNT transistors, the need for corresponding modelling techniques has also grown rapidly. This research is focused on the electron transport characteristics of CNT transistors, with the aim to develop efficient techniques
to model and simulate CNT devices for logic circuit analysis.

The contributions of this research can be summarised as follows. Firstly, to accelerate the evaluation of the equations that model a CNT transistor, while maintaining high modelling accuracy, three efficient numerical techniques based on piece-wise linear, quadratic polynomial and cubic spline approximation have been developed. The numerical approximation simplifies the solution of the CNT transistor’s self-consistent voltage such that the calculation of the drain-source current is accelerated by at least two orders of magnitude. The numerical approach eliminates complicated calculations in the modelling process and facilitates the development of fast and efficient CNT transistor models for circuit simulation.

Secondly, non-ballistic CNT transistors have been considered, and extended circuit-level models which can capture both ballistic and non-ballistic electron transport phenomena, including elastic scattering, phonon scattering, strain and tunnelling effects, have been developed. A salient feature of the developed models is their ability to incorporate both ballistic and non-ballistic transport mechanisms without a significant computational cost. The developed models have been extensively validated against reported transport theories of CNT transistors and experimental results.

Thirdly, the proposed carbon nanotube transistor models have been implemented on several platforms. The underlying algorithms have been developed and tested in MATLAB, behaviourallevel models in VHDL-AMS, and improved circuit-level models have been implemented in two versions of the SPICE simulator. As the final contribution of this work, parameter variation analysis has been carried out in SPICE3 to study the performance of the proposed circuit-level CNT transistor models in logic circuit analysis. Typical circuits, including inverters and adders, have been analysed to determine the dependence of the circuit’s correct operation on CNT parameter variation.

Text
PhD_Thesis_Dafeng_Zhou.pdf - Other
Download (1MB)

More information

Published date: July 2010
Organisations: University of Southampton, EEE

Identifiers

Local EPrints ID: 301182
URI: http://eprints.soton.ac.uk/id/eprint/301182
PURE UUID: 1ad937d1-30ca-458d-890f-1844cb6da9b2

Catalogue record

Date deposited: 26 Mar 2012 15:53
Last modified: 14 Mar 2024 10:27

Export record

Contributors

Author: Dafeng Zhou
Thesis advisor: Bashir M. Al-Hashimi
Thesis advisor: T. Kazmierski

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×