The University of Southampton
University of Southampton Institutional Repository

Acoustic features of piano sounds

Acoustic features of piano sounds
Acoustic features of piano sounds
To date efforts of music transcription indicate the need for modelling the data signal in a more comprehensive manner in order to improve the transcription process of music performances. This research work is concerned with the investigation of two features associated with the reproduced sound of a piano; the inharmonicity factor of the piano strings and the double decay rate of the resulting sound. Firstly, a simple model of the inharmonicity is proposed and the factors that affect the modelled signal are identified, such as the magnitude of the inharmonicity, the number of harmonics, the time parameter, the phase characteristics and the harmonic amplitudes. A formation of a socalled “one-sided” effect appears in simulated signals, although this effect is obscured in real recordings potentially due to the non-uniformly varying amplitudes of the harmonic terms. This effect is also discussed through the use of the cepstrum by analysing real piano note recordings and synthesized signals. The cepstrum is further used to describe the effect of the coupled behaviour of two strings through digital waveguides. Secondly, the double decay rate effect is modelled through coupled oscillators and digital waveguides. A physical model of multiple strings is also presented as an extension to the simple model of coupled oscillators and various measurements on a real grand piano are carried out in order to investigate the coupling mechanism between the strings, the soundboard and the bridge. Finally, a model, with reduced dimensionality, is proposed to represent the signal model for single and multiple notes formulated around a Bayesian framework. The potential of such a model is illustrated with the transcription of simple examples of real monophonic and polyphonic piano recordings by implementing the Metropolis-Hastings algorithm and Gibbs sampler for multivariate parameter estimation.
Karatsovis, Christos
6ac8ef49-58cd-4ca0-b99d-17d9257634a6
Karatsovis, Christos
6ac8ef49-58cd-4ca0-b99d-17d9257634a6
White, Paul R.
2dd2477b-5aa9-42e2-9d19-0806d994eaba

Karatsovis, Christos (2011) Acoustic features of piano sounds. University of Southampton, Institute of Sound and Vibration Research, Doctoral Thesis, 191pp.

Record type: Thesis (Doctoral)

Abstract

To date efforts of music transcription indicate the need for modelling the data signal in a more comprehensive manner in order to improve the transcription process of music performances. This research work is concerned with the investigation of two features associated with the reproduced sound of a piano; the inharmonicity factor of the piano strings and the double decay rate of the resulting sound. Firstly, a simple model of the inharmonicity is proposed and the factors that affect the modelled signal are identified, such as the magnitude of the inharmonicity, the number of harmonics, the time parameter, the phase characteristics and the harmonic amplitudes. A formation of a socalled “one-sided” effect appears in simulated signals, although this effect is obscured in real recordings potentially due to the non-uniformly varying amplitudes of the harmonic terms. This effect is also discussed through the use of the cepstrum by analysing real piano note recordings and synthesized signals. The cepstrum is further used to describe the effect of the coupled behaviour of two strings through digital waveguides. Secondly, the double decay rate effect is modelled through coupled oscillators and digital waveguides. A physical model of multiple strings is also presented as an extension to the simple model of coupled oscillators and various measurements on a real grand piano are carried out in order to investigate the coupling mechanism between the strings, the soundboard and the bridge. Finally, a model, with reduced dimensionality, is proposed to represent the signal model for single and multiple notes formulated around a Bayesian framework. The potential of such a model is illustrated with the transcription of simple examples of real monophonic and polyphonic piano recordings by implementing the Metropolis-Hastings algorithm and Gibbs sampler for multivariate parameter estimation.

Text
Karatsovis_PhD_document.pdf - Other
Download (2MB)

More information

Published date: November 2011
Organisations: University of Southampton, Inst. Sound & Vibration Research

Identifiers

Local EPrints ID: 333304
URI: http://eprints.soton.ac.uk/id/eprint/333304
PURE UUID: 9acf9365-627e-442a-9595-e638d9c0c53b
ORCID for Paul R. White: ORCID iD orcid.org/0000-0002-4787-8713

Catalogue record

Date deposited: 17 Apr 2012 09:05
Last modified: 15 Mar 2024 02:41

Export record

Contributors

Author: Christos Karatsovis
Thesis advisor: Paul R. White ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×