The University of Southampton
University of Southampton Institutional Repository

Differential evolution algorithm aided minimum symbol error rate multi-user detection for multi-user OFDM/SDMA systems

Differential evolution algorithm aided minimum symbol error rate multi-user detection for multi-user OFDM/SDMA systems
Differential evolution algorithm aided minimum symbol error rate multi-user detection for multi-user OFDM/SDMA systems
A Differential Evolution (DE) algorithm assisted Minimum Symbol Error Ratio (MSER) Multi-User Detection (MUD) scheme is proposed for multi-user Multiple-Input Multiple-Output (MIMO) aided Orthogonal Frequency-Division Multiplexing / Space Division Multiple Access (OFDM/SDMA) systems. Quadrature Amplitude Modulation (QAM) is employed in most wireless standards by virtue of providing a high throughput. The MSER Cost Function (CF) may be deemed to be the most relevant one for QAM, but finding its minimum is challenging. Hence we propose a sophisticated DE assisted MSER-MUD scheme, which directly minimizes the SER CF of multi-user OFDM/SDMA systems employing QAM. Furthermore, the effects of the DE assisted MSER-MUD’s algorithmic parameters, namely those of the population size Ps, of the scaling factor ? and of the crossover probability Cr on the number of DE generations required for attaining convergence were investigated in our simulations. This allowed us to directly quantify their complexity. The simulation results also demonstrate that the proposed DE assisted MSER-MUD scheme significantly outperforms the conventional MMSE-MUD in term of the system’s overall BER and it is capable of narrowing its BER performance discrepancy with respect to the optimal Maximum Likelihood (ML) MUD to about 4dB, while requiring about 200 times less CF evaluations compared to the optimal ML-MUD scheme.
Zhang, Jiankang
6add829f-d955-40ca-8214-27a039defc8a
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Mu, Xiaomin
3d578909-36ba-4b16-b703-2ef63532116c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Zhang, Jiankang
6add829f-d955-40ca-8214-27a039defc8a
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Mu, Xiaomin
3d578909-36ba-4b16-b703-2ef63532116c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Zhang, Jiankang, Chen, Sheng, Mu, Xiaomin and Hanzo, Lajos (2012) Differential evolution algorithm aided minimum symbol error rate multi-user detection for multi-user OFDM/SDMA systems. 2012 IEEE 75th Vehicular Technology Conference (VTC2012-Spring), Yokohama, Japan. 5 pp .

Record type: Conference or Workshop Item (Paper)

Abstract

A Differential Evolution (DE) algorithm assisted Minimum Symbol Error Ratio (MSER) Multi-User Detection (MUD) scheme is proposed for multi-user Multiple-Input Multiple-Output (MIMO) aided Orthogonal Frequency-Division Multiplexing / Space Division Multiple Access (OFDM/SDMA) systems. Quadrature Amplitude Modulation (QAM) is employed in most wireless standards by virtue of providing a high throughput. The MSER Cost Function (CF) may be deemed to be the most relevant one for QAM, but finding its minimum is challenging. Hence we propose a sophisticated DE assisted MSER-MUD scheme, which directly minimizes the SER CF of multi-user OFDM/SDMA systems employing QAM. Furthermore, the effects of the DE assisted MSER-MUD’s algorithmic parameters, namely those of the population size Ps, of the scaling factor ? and of the crossover probability Cr on the number of DE generations required for attaining convergence were investigated in our simulations. This allowed us to directly quantify their complexity. The simulation results also demonstrate that the proposed DE assisted MSER-MUD scheme significantly outperforms the conventional MMSE-MUD in term of the system’s overall BER and it is capable of narrowing its BER performance discrepancy with respect to the optimal Maximum Likelihood (ML) MUD to about 4dB, while requiring about 200 times less CF evaluations compared to the optimal ML-MUD scheme.

Text
vtc-2012-Spring.pdf - Author's Original
Download (563kB)

More information

e-pub ahead of print date: 7 May 2012
Venue - Dates: 2012 IEEE 75th Vehicular Technology Conference (VTC2012-Spring), Yokohama, Japan, 2012-05-06
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 338097
URI: http://eprints.soton.ac.uk/id/eprint/338097
PURE UUID: 00961260-9810-4a69-949f-dd56a3684123
ORCID for Jiankang Zhang: ORCID iD orcid.org/0000-0001-5316-1711
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 09 May 2012 16:18
Last modified: 18 Feb 2021 17:13

Export record

Contributors

Author: Jiankang Zhang ORCID iD
Author: Sheng Chen
Author: Xiaomin Mu
Author: Lajos Hanzo ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×