The University of Southampton
University of Southampton Institutional Repository

Understanding and dealing with unit nonresponse during and post survey data collection

Record type: Thesis (Doctoral)

Nonresponse in sample surveys is a longstanding concern among social researchers and survey methodologists. In addition to potential biases in point estimates, nonresponse can result in inflation of the variances of such estimates. This thesis focuses on understanding and dealing with unit nonresponse in sample surveys during and post data collection. In particular it looks at modelling the process leading to nonresponse using call record data; developing weighting adjustments for clustered nonresponse; and investigating variance estimation methods in the presence of nonresponse. During data collection, effective interviewer calling behaviours are critical in achieving contact and subsequent cooperation. Recent developments in the survey data collection process have led to the collection of so-called paradata, which greatly extend the basic information on interviewer calls. The first part of the thesis develops multilevel models based on a particular type of paradata, call record data and interviewer observations, to predict the likelihood of contact and cooperation conditioning on household and interviewer characteristics. The research is based on the UK 2001 Census Link Study dataset. The results have implications for survey practice and, among others, inform the design of effective interviewer calling strategies, including responsive survey designs. Post-survey estimation methods to adjust and account for nonresponse, such as weighting methods, include inverse probability weighting and generalized raking estimation. The second part of the thesis investigates alternative inverse probability weighted estimators for clustered nonresponse through a simulation study. Results from an empirical application using data from the Expenditure and Food Survey 2001 are presented. It also discusses three forms of generalized raking estimator in the presence of nonresponse. Weighting methods might result in increased variability in the weights and thereby lower the precision of the survey estimates. This thesis explores alternative forms of linearization and replication variance estimators for generalized raking estimators under nonresponse that allow for variation in the weights.

PDF Doctoral_Thesis_DArrigo.pdf - Other
Download (2MB)

Citation

D'Arrigo, Julia (2011) Understanding and dealing with unit nonresponse during and post survey data collection University of Southampton, Social Sciences, Doctoral Thesis , 162pp.

More information

Published date: November 2011
Organisations: University of Southampton, Social Statistics & Demography

Identifiers

Local EPrints ID: 339825
URI: http://eprints.soton.ac.uk/id/eprint/339825
PURE UUID: 317f2811-8825-437c-be87-606127840fe1

Catalogue record

Date deposited: 28 Jun 2012 09:10
Last modified: 18 Jul 2017 05:51

Export record

Contributors

Author: Julia D'Arrigo
Thesis advisor: Christopher Skinner
Thesis advisor: Gabriele Durrant

University divisions


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×