The University of Southampton
University of Southampton Institutional Repository

Engineering design applications of surrogate-assisted optimization techniques

Sobester, Andras, Forrester, Alexander I.J., Toal, David J.J., Tresidder, Es and Tucker, Simon (2014) Engineering design applications of surrogate-assisted optimization techniques Optimization and Engineering, 15, (1), pp. 243-265. (doi:10.1007/s11081-012-9199-x).

Record type: Article

Abstract

The construction of models aimed at learning the behaviour of a system whose responses to inputs are expensive to measure is a branch of statistical science that has been around for a very long time. Geostatistics has pioneered a drive over the last half century towards a better understanding of the accuracy of such ‘surrogate’ models of the expensive function. Of particular interest to us here are some of the even more recent advances related to exploiting such formulations in an optimization context. While the classic goal of the modelling process has been to achieve a uniform prediction accuracy across the domain, an economical optimization process may aim to bias the distribution of the learning budget towards promising basins of attraction. This can only happen, of course, at the expense of the global exploration of the space and thus finding the best balance may be viewed as an optimization problem in itself. We examine here a selection of the state of-the-art solutions to this type of balancing exercise through the prism of several simple, illustrative problems, followed by two ‘real world’ applications: the design of a regional airliner wing and the multi-objective search for a low environmental impact house

PDF OPTE538.pdf - Author's Original
Download (672kB)

More information

e-pub ahead of print date: 12 September 2012
Published date: March 2014
Organisations: Computational Engineering & Design Group

Identifiers

Local EPrints ID: 342651
URI: http://eprints.soton.ac.uk/id/eprint/342651
ISSN: 1389-4420
PURE UUID: cfc6b8c4-99fd-4796-a057-efeefbe9b9e4
ORCID for Andras Sobester: ORCID iD orcid.org/0000-0002-8997-4375
ORCID for David J.J. Toal: ORCID iD orcid.org/0000-0002-2203-0302

Catalogue record

Date deposited: 12 Sep 2012 10:34
Last modified: 18 Jul 2017 05:27

Export record

Altmetrics

Contributors

Author: Andras Sobester ORCID iD
Author: David J.J. Toal ORCID iD
Author: Es Tresidder
Author: Simon Tucker

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×