Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease


Cortese-Krott, Miriam M., Rodriguez-Mateos, Ana, Sansone, Roberto, Kuhnle, Gunter G.C., Thasian-Sivarajah, Sivatharsini, Krenz, Thomas, Horn, Patrick, Krisp, Christoph, Wolters, Dirk, Heiß, Christian, Kroncke, Klaus-Dietrich, Hogg, Neil, Feelisch, Martin and Kelm, Malte (2012) Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease Blood, 120, pp. 4229-4237. (doi:10.1182/blood-2012-07-442277). (PMID:23007404).

Download

[img] PDF 2012-Cortese-Krott Blood-prepub.pdf - Other
Download (888kB)
[img] PDF __userfiles.soton.ac.uk_Users_nsc_mydesktop_343579feelisch.pdf - Version of Record
Restricted to Repository staff only

Download (534kB)

Description/Abstract

A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1182/blood-2012-07-442277
ISSNs: 0006-4971 (print)
Subjects:
Organisations: Clinical & Experimental Sciences
ePrint ID: 343579
Date :
Date Event
24 September 2012e-pub ahead of print
Date Deposited: 04 Oct 2012 16:05
Last Modified: 17 Apr 2017 16:33
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/343579

Actions (login required)

View Item View Item