The University of Southampton
University of Southampton Institutional Repository

Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired

Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired
Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired
Although there are numerous single-channel noise reduction strategies to improve speech perception in a noisy environment, most of them can only improve speech quality but not improve speech intelligibility for normal hearing (NH) or hearing impaired (HI) listeners. Exceptions that can improve speech intelligibility currently are only those that require a priori statistics of speech or noise. Most of the noise reduction algorithms in hearing aids are adopted directly from the algorithms for NH listeners without taking into account of the hearing loss factors within HI listeners. HI listeners suffer more in speech intelligibility than NH listeners in the same noisy environment. Further study of monaural noise reduction algorithms for HI listeners is required.

The motivation is to adapt a model-based approach in contrast to the conventional Wiener filtering approach. The model-based algorithm called sparse coding shrinkage (SCS) was proposed to extract key speech information from noisy speech. The SCS algorithm was evaluated by comparison with another state-of-the-art Wiener filtering approach through speech intelligibility and quality tests using 9 NH and 9 HI listeners. The SCS algorithm matched the performance of the Wiener filtering algorithm in speech intelligibility and speech quality. Both algorithms showed some intelligibility improvements for HI listeners but not at all for NH listeners. The algorithms improved speech quality for both HI and NH listeners.

Additionally, a physiologically-inspired hearing loss simulation (HLS) model was developed to characterize hearing loss factors and simulate hearing loss consequences. A methodology was proposed to evaluate signal processing strategies for HI listeners with the proposed HLS model and NH subjects. The corresponding experiment was performed by asking NH subjects to listen to unprocessed/enhanced speech with the HLS model. Some of the effects of the algorithms seen in HI listeners are reproduced, at least qualitatively, by using the HLS model with NH listeners.

Conclusions: The model-based algorithm SCS is promising for improving performance in stationary noise although no clear difference was seen in the performance of SCS and a competitive Wiener filtering algorithm. Fluctuating noise is more difficult to reduce compared to stationary noise. Noise reduction algorithms may perform better at higher input signal-to-noise ratios (SNRs) where HI listeners can get benefit but where NH listeners already reach ceiling performance. The proposed HLS model can save time and cost when evaluating noise reduction algorithms for HI listeners.
Sang, Jinqiu
d33111c8-c75b-40e4-a66b-3f486d7ac171
Sang, Jinqiu
d33111c8-c75b-40e4-a66b-3f486d7ac171
Bleeck, Stefan
c888ccba-e64c-47bf-b8fa-a687e87ec16c

(2012) Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired. University of Southampton, Faculty of Engineering and the Environment, Doctoral Thesis, 181pp.

Record type: Thesis (Doctoral)

Abstract

Although there are numerous single-channel noise reduction strategies to improve speech perception in a noisy environment, most of them can only improve speech quality but not improve speech intelligibility for normal hearing (NH) or hearing impaired (HI) listeners. Exceptions that can improve speech intelligibility currently are only those that require a priori statistics of speech or noise. Most of the noise reduction algorithms in hearing aids are adopted directly from the algorithms for NH listeners without taking into account of the hearing loss factors within HI listeners. HI listeners suffer more in speech intelligibility than NH listeners in the same noisy environment. Further study of monaural noise reduction algorithms for HI listeners is required.

The motivation is to adapt a model-based approach in contrast to the conventional Wiener filtering approach. The model-based algorithm called sparse coding shrinkage (SCS) was proposed to extract key speech information from noisy speech. The SCS algorithm was evaluated by comparison with another state-of-the-art Wiener filtering approach through speech intelligibility and quality tests using 9 NH and 9 HI listeners. The SCS algorithm matched the performance of the Wiener filtering algorithm in speech intelligibility and speech quality. Both algorithms showed some intelligibility improvements for HI listeners but not at all for NH listeners. The algorithms improved speech quality for both HI and NH listeners.

Additionally, a physiologically-inspired hearing loss simulation (HLS) model was developed to characterize hearing loss factors and simulate hearing loss consequences. A methodology was proposed to evaluate signal processing strategies for HI listeners with the proposed HLS model and NH subjects. The corresponding experiment was performed by asking NH subjects to listen to unprocessed/enhanced speech with the HLS model. Some of the effects of the algorithms seen in HI listeners are reproduced, at least qualitatively, by using the HLS model with NH listeners.

Conclusions: The model-based algorithm SCS is promising for improving performance in stationary noise although no clear difference was seen in the performance of SCS and a competitive Wiener filtering algorithm. Fluctuating noise is more difficult to reduce compared to stationary noise. Noise reduction algorithms may perform better at higher input signal-to-noise ratios (SNRs) where HI listeners can get benefit but where NH listeners already reach ceiling performance. The proposed HLS model can save time and cost when evaluating noise reduction algorithms for HI listeners.

PDF
jinqiu_sang_PhD_thesis.pdf - Other
Download (7MB)

More information

Published date: September 2012
Organisations: University of Southampton, Inst. Sound & Vibration Research

Identifiers

Local EPrints ID: 348849
URI: http://eprints.soton.ac.uk/id/eprint/348849
PURE UUID: c80e9661-9db8-4999-b75d-77c9cbae564b
ORCID for Stefan Bleeck: ORCID iD orcid.org/0000-0003-4378-3394

Catalogue record

Date deposited: 05 Mar 2013 13:54
Last modified: 06 Jun 2018 12:41

Export record

Contributors

Author: Jinqiu Sang
Thesis advisor: Stefan Bleeck ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×