The University of Southampton
University of Southampton Institutional Repository

Experimental and numerical research on pharmaceutical aerosols

Experimental and numerical research on pharmaceutical aerosols
Experimental and numerical research on pharmaceutical aerosols
With the background of health issues regarding the consumption of tobacco, the widespread availability of safer nicotine products and a harm reduction policy is encouraged. A cigarette alternative is designed to deliver a dose of medicinal nicotine within a timeframe comparable to that of a cigarette, and gives much of what smokers expect from a cigarette without the risks of smoking tobacco. The general purpose of this Ph.D. project is to study the process of flashing atomization and dispersion, with a view to supporting the development of a cigarette replacement device. In order to test the effectiveness of the nicotine formulations, the analysis is carried out sizing the droplets of the aerosols at the position where human oropharynx locates, to support the further research on the deposition of droplets in the human respiratory tract. A mechanical lung has been assembled and programmed to trigger the ‘cigarette-like’ devices with different inhalation profiles, and a dual laser system has been designed to measure the global actuation flow characteristics (e.g. spray velocity and opacity). In order to efficiently acquire sufficient droplet information (e.g. diameter and aspect ratio) from images of in and out of focus droplets, a multi-threshold algorithm is developed and successfully implemented in the automatic particle/droplet image analysis (PDIA) system. It increases the depth of field (DoF) of small particles with diameters smaller than 50?m, and it performs more efficiently than the dual threshold methods which are widely used in the commercial software. A numerical multi-component two-phase actuation flow model has been developed, in order to test different formulations within various flow domains of the cigarette replacement devices. The simulated results of the numerical model have been validated with the experimental measurements and the results of previous researchers. In order to acquire an aerosol with relatively low and steady mass flow rate of nicotine, it is recommended that the mass fraction of propellant (HFA 134a) should be kept around 75%~90% to avoid the sharp temperature drop causing the sensation of freezing. The actuator nozzle diameter should be 0.2mm~0.3mm to produce a flow with relatively low mass flow rate. Furthermore the numerical model is capable of predicting the residual mass median diameter (MMD) of the spray, by using evaporation model of multicomponent liquid droplets, to quantify the sprays. Two different formulations with 95% and 98% mass fraction of HFA 134a, and two prototype cigarette alternatives with different expansion chamber volumes, have been analyzed by the numerical model and compared with the dual laser measurements. In addition, it considers the spray character by high speed imaging, with the special interest in the flashing phenomena and droplet sizes. It concludes that a larger expansion chamber volume enhances the propellant evaporation, recirculation, bubble generation and growth inside the chamber, and it made a significant improvement to produce finer sprays. Although the formulation with 98% of HFA 134a can generate smaller droplets, the formulation with 95% of HFA 134a produces more steady puffs with relatively low mass flow rate.
Ju, Dehao
152e0f9a-b36c-4acf-9a21-6be7dd0515f9
Ju, Dehao
152e0f9a-b36c-4acf-9a21-6be7dd0515f9
Shrimpton, J.S.
9cf82d2e-2f00-4ddf-bd19-9aff443784af

Ju, Dehao (2012) Experimental and numerical research on pharmaceutical aerosols. University of Southampton, Faculty of Engineering and the Environment, Doctoral Thesis, 244pp.

Record type: Thesis (Doctoral)

Abstract

With the background of health issues regarding the consumption of tobacco, the widespread availability of safer nicotine products and a harm reduction policy is encouraged. A cigarette alternative is designed to deliver a dose of medicinal nicotine within a timeframe comparable to that of a cigarette, and gives much of what smokers expect from a cigarette without the risks of smoking tobacco. The general purpose of this Ph.D. project is to study the process of flashing atomization and dispersion, with a view to supporting the development of a cigarette replacement device. In order to test the effectiveness of the nicotine formulations, the analysis is carried out sizing the droplets of the aerosols at the position where human oropharynx locates, to support the further research on the deposition of droplets in the human respiratory tract. A mechanical lung has been assembled and programmed to trigger the ‘cigarette-like’ devices with different inhalation profiles, and a dual laser system has been designed to measure the global actuation flow characteristics (e.g. spray velocity and opacity). In order to efficiently acquire sufficient droplet information (e.g. diameter and aspect ratio) from images of in and out of focus droplets, a multi-threshold algorithm is developed and successfully implemented in the automatic particle/droplet image analysis (PDIA) system. It increases the depth of field (DoF) of small particles with diameters smaller than 50?m, and it performs more efficiently than the dual threshold methods which are widely used in the commercial software. A numerical multi-component two-phase actuation flow model has been developed, in order to test different formulations within various flow domains of the cigarette replacement devices. The simulated results of the numerical model have been validated with the experimental measurements and the results of previous researchers. In order to acquire an aerosol with relatively low and steady mass flow rate of nicotine, it is recommended that the mass fraction of propellant (HFA 134a) should be kept around 75%~90% to avoid the sharp temperature drop causing the sensation of freezing. The actuator nozzle diameter should be 0.2mm~0.3mm to produce a flow with relatively low mass flow rate. Furthermore the numerical model is capable of predicting the residual mass median diameter (MMD) of the spray, by using evaporation model of multicomponent liquid droplets, to quantify the sprays. Two different formulations with 95% and 98% mass fraction of HFA 134a, and two prototype cigarette alternatives with different expansion chamber volumes, have been analyzed by the numerical model and compared with the dual laser measurements. In addition, it considers the spray character by high speed imaging, with the special interest in the flashing phenomena and droplet sizes. It concludes that a larger expansion chamber volume enhances the propellant evaporation, recirculation, bubble generation and growth inside the chamber, and it made a significant improvement to produce finer sprays. Although the formulation with 98% of HFA 134a can generate smaller droplets, the formulation with 95% of HFA 134a produces more steady puffs with relatively low mass flow rate.

Text
Dehao_Ju_PhD_energy_tech_05May2012.pdf - Other
Download (14MB)

More information

Published date: May 2012
Organisations: University of Southampton, Engineering Science Unit

Identifiers

Local EPrints ID: 348916
URI: http://eprints.soton.ac.uk/id/eprint/348916
PURE UUID: dec941a3-d7a5-47fe-8846-048f037fe503

Catalogue record

Date deposited: 05 Mar 2013 15:16
Last modified: 14 Mar 2024 13:07

Export record

Contributors

Author: Dehao Ju
Thesis advisor: J.S. Shrimpton

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×