The University of Southampton
University of Southampton Institutional Repository

Structure and electrical properties of silica-based polyethylene nanocomposites

Structure and electrical properties of silica-based polyethylene nanocomposites
Structure and electrical properties of silica-based polyethylene nanocomposites
The topic of polymer nanocomposites remains an active area of research in the dielectrics community, due to the unique electrical properties that these materials could exhibit. To explain the behaviour of these materials, the importance of clarifying the interfaces between nanoparticles and polymer matrices has been emphasised. However, understanding of the interface in nanocomposites is unsatisfactory and, consequently,many experimental results remain unexplained. This thesis reports on an investigation into a polyethylene nanocomposite system that contains varying amounts of nanosilica that differ with respect to their surface chemistry. The addition of nanosilica, even with different surface chemistries, was found to enhance the nucleation density of polyethylene and perturb the spherulitic development. While less organised lamellar structures would be expected to lead to a lower breakdown strength, this does not appear to be the case for the material systems considered here under alternating current (AC) fields. In addition, nanosilica filled polyethylene was found to absorb significantly more water than unfilled polyethylene, with the consequence that both the permittivity and the loss tangent increase with increasing duration of water immersion. However, appropriate surface treatment of nanosilica reduces the water absorption effect and modifies the dielectric response of the nanocomposites compared with those containing an equivalent amount of untreated nanosilica. Although water absorption may not be a technologically desirable characteristic, the results indicate that water molecules can act as effective dielectric probes of interfacial factors. Meanwhile, the direct current (DC) breakdown strength reduces with the inclusion of increasing amount of nanosilica in the polyethylene, but surface treatment of nanosilica improves the DC breakdown strength with respect to equivalent nanocomposites containing untreated nanosilica. Results from space charge studies reveal increased space charge accumulation in the presence of the untreated nanosilica and, upon surface treatment of the nanosilica, the charge development was suppressed in comparison with nanocomposites containing an equivalent amount of untreated nanosilica. This observation suggests that space charge accumulation and DC failure are related in these systems and it would seem that control of surface chemistry is particularly critical in connection with the use of nanocomposites in DC applications. Finally, the mechanisms underpinning the concept of filler functionalisation in nanocomposites were investigated via the use of different aliphatic chain length silane coupling agents, and the results show that long silane chains enhance the DC breakdown strength of the resulting nanocomposites. The possible further enhancement in DC breakdown strength is also highlighted. Overall, this thesis demonstrates how a nanoparticle’s interface chemistry can affect both the structure and the electrical properties of the resulting nanocomposites, and serves as an important foundation towards the engineering of nanocomposites as the reliable electricalinsulation materials of the future, through the understanding of the interface.
Lau, K.Y.
4f20d9d7-c517-4af9-bb57-b4f47538bf68
Lau, K.Y.
4f20d9d7-c517-4af9-bb57-b4f47538bf68
Vaughan, A. S.
6d813b66-17f9-4864-9763-25a6d659d8a3

Lau, K.Y. (2013) Structure and electrical properties of silica-based polyethylene nanocomposites. University of Southampton, Faculty of Physical Sciences and Engineering, Doctoral Thesis, 216pp.

Record type: Thesis (Doctoral)

Abstract

The topic of polymer nanocomposites remains an active area of research in the dielectrics community, due to the unique electrical properties that these materials could exhibit. To explain the behaviour of these materials, the importance of clarifying the interfaces between nanoparticles and polymer matrices has been emphasised. However, understanding of the interface in nanocomposites is unsatisfactory and, consequently,many experimental results remain unexplained. This thesis reports on an investigation into a polyethylene nanocomposite system that contains varying amounts of nanosilica that differ with respect to their surface chemistry. The addition of nanosilica, even with different surface chemistries, was found to enhance the nucleation density of polyethylene and perturb the spherulitic development. While less organised lamellar structures would be expected to lead to a lower breakdown strength, this does not appear to be the case for the material systems considered here under alternating current (AC) fields. In addition, nanosilica filled polyethylene was found to absorb significantly more water than unfilled polyethylene, with the consequence that both the permittivity and the loss tangent increase with increasing duration of water immersion. However, appropriate surface treatment of nanosilica reduces the water absorption effect and modifies the dielectric response of the nanocomposites compared with those containing an equivalent amount of untreated nanosilica. Although water absorption may not be a technologically desirable characteristic, the results indicate that water molecules can act as effective dielectric probes of interfacial factors. Meanwhile, the direct current (DC) breakdown strength reduces with the inclusion of increasing amount of nanosilica in the polyethylene, but surface treatment of nanosilica improves the DC breakdown strength with respect to equivalent nanocomposites containing untreated nanosilica. Results from space charge studies reveal increased space charge accumulation in the presence of the untreated nanosilica and, upon surface treatment of the nanosilica, the charge development was suppressed in comparison with nanocomposites containing an equivalent amount of untreated nanosilica. This observation suggests that space charge accumulation and DC failure are related in these systems and it would seem that control of surface chemistry is particularly critical in connection with the use of nanocomposites in DC applications. Finally, the mechanisms underpinning the concept of filler functionalisation in nanocomposites were investigated via the use of different aliphatic chain length silane coupling agents, and the results show that long silane chains enhance the DC breakdown strength of the resulting nanocomposites. The possible further enhancement in DC breakdown strength is also highlighted. Overall, this thesis demonstrates how a nanoparticle’s interface chemistry can affect both the structure and the electrical properties of the resulting nanocomposites, and serves as an important foundation towards the engineering of nanocomposites as the reliable electricalinsulation materials of the future, through the understanding of the interface.

Text
Lau.pdf - Other
Download (6MB)

More information

Published date: September 2013
Organisations: University of Southampton, EEE

Identifiers

Local EPrints ID: 358889
URI: http://eprints.soton.ac.uk/id/eprint/358889
PURE UUID: bcfcfa1c-027d-4f58-b597-f2e6ca936a9f
ORCID for A. S. Vaughan: ORCID iD orcid.org/0000-0002-0535-513X

Catalogue record

Date deposited: 10 Dec 2013 15:27
Last modified: 15 Mar 2024 03:06

Export record

Contributors

Author: K.Y. Lau
Thesis advisor: A. S. Vaughan ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×