The University of Southampton
University of Southampton Institutional Repository

Quadrature error cancellation for micro-machined vibratory gyroscope embedded in high order electromechanical Sigma Delta modulator

Quadrature error cancellation for micro-machined vibratory gyroscope embedded in high order electromechanical Sigma Delta modulator
Quadrature error cancellation for micro-machined vibratory gyroscope embedded in high order electromechanical Sigma Delta modulator
Vibratory micro-machined gyroscopes utilize Coriolis force to detect the rotation rate. Recently it has been proved that embedding the gyroscope in an electromechanical ΣΔ modulator (EMSDM), results in increased linearity, rate detection range, and immunity to fabrication variations. In addition, this architecture can be deployed as a ΣΔ modulator (SDM) analogue to digital converter (ADC), providing a digital bit stream that can be used directly by any digital signal processing system (e.g. micro-processors). Furthermore, recent research has proved that higher order EMSDMs proved to deliver better performance in terms of signal to noise ratio while retaining linearity, dynamic range, fabrication tolerance and bandwidth advantages. Furthermore, in the view of ADC performance, higher order SDMs achieve higher resolution performance which is a desired feature for an ADC. Considering all these advantages, there have been attempts to deploy this approach in designing micro-machined gyroscopes interface in form of low-pass and band-pass EMSDM in order to achieve detection of high angular rate motions and angular motions with faster variation (which requires higher band width). However, the fabrication process of vibratory micro machined gyroscopes just like any other micro fabrication process is prone to flaws and inaccuracies. One of these flaws in the case of vibratory gyroscopes is the root cause of a mechanical coupling that occurs between the excitation direction and detection direction. This coupling results in appearance of an error signal in the detection direction which is known as quadrature error. Existence of this mechanical error results in reduction of performance in this type of gyroscopes and most importantly it limits the dynamic range of the sensor. In this work, a novel interface is proposed that eliminates the quadrature error while retaining the advantages of EMSDM for micro-machined gyroscopes system. The approach is a combination of quadrature amplitude modulation technique which is quite mature in communication systems, time division modulation in digital systems and the fundamental theory of EMSDM. A system level model of the novel architecture has been developed by using Matlab and Simulink. The system level simulation of the novel interface indicates that attenuation of -80dB can be achieved for the quadrature error signal. Furthermore, circuit level simulation model has been developed using Orcad/Pspice, in order to verify the consistency of the system level simulation. Finally a prototype PCB has been built characterized to evaluate the practical system performance. The measurement results on the hardware implementation show that the quadrature error power spectral density is attenuated by -70dB. In another words, the quadrature error is attenuated by about 3 orders of magnitude in the hardware implementation prototype.
Salimi, Pejwaak
d7503304-0b38-43cc-a43c-e5e5bd55f550
Salimi, Pejwaak
d7503304-0b38-43cc-a43c-e5e5bd55f550
Kraft, Michael
54927621-738f-4d40-af56-a027f686b59f

Salimi, Pejwaak (2013) Quadrature error cancellation for micro-machined vibratory gyroscope embedded in high order electromechanical Sigma Delta modulator. University of Southampton, Physical Sciences and Engineering, Doctoral Thesis, 137pp.

Record type: Thesis (Doctoral)

Abstract

Vibratory micro-machined gyroscopes utilize Coriolis force to detect the rotation rate. Recently it has been proved that embedding the gyroscope in an electromechanical ΣΔ modulator (EMSDM), results in increased linearity, rate detection range, and immunity to fabrication variations. In addition, this architecture can be deployed as a ΣΔ modulator (SDM) analogue to digital converter (ADC), providing a digital bit stream that can be used directly by any digital signal processing system (e.g. micro-processors). Furthermore, recent research has proved that higher order EMSDMs proved to deliver better performance in terms of signal to noise ratio while retaining linearity, dynamic range, fabrication tolerance and bandwidth advantages. Furthermore, in the view of ADC performance, higher order SDMs achieve higher resolution performance which is a desired feature for an ADC. Considering all these advantages, there have been attempts to deploy this approach in designing micro-machined gyroscopes interface in form of low-pass and band-pass EMSDM in order to achieve detection of high angular rate motions and angular motions with faster variation (which requires higher band width). However, the fabrication process of vibratory micro machined gyroscopes just like any other micro fabrication process is prone to flaws and inaccuracies. One of these flaws in the case of vibratory gyroscopes is the root cause of a mechanical coupling that occurs between the excitation direction and detection direction. This coupling results in appearance of an error signal in the detection direction which is known as quadrature error. Existence of this mechanical error results in reduction of performance in this type of gyroscopes and most importantly it limits the dynamic range of the sensor. In this work, a novel interface is proposed that eliminates the quadrature error while retaining the advantages of EMSDM for micro-machined gyroscopes system. The approach is a combination of quadrature amplitude modulation technique which is quite mature in communication systems, time division modulation in digital systems and the fundamental theory of EMSDM. A system level model of the novel architecture has been developed by using Matlab and Simulink. The system level simulation of the novel interface indicates that attenuation of -80dB can be achieved for the quadrature error signal. Furthermore, circuit level simulation model has been developed using Orcad/Pspice, in order to verify the consistency of the system level simulation. Finally a prototype PCB has been built characterized to evaluate the practical system performance. The measurement results on the hardware implementation show that the quadrature error power spectral density is attenuated by -70dB. In another words, the quadrature error is attenuated by about 3 orders of magnitude in the hardware implementation prototype.

Text
Salimi.pdf - Other
Download (11MB)

More information

Published date: March 2013
Organisations: University of Southampton, Electronics & Computer Science

Identifiers

Local EPrints ID: 361723
URI: http://eprints.soton.ac.uk/id/eprint/361723
PURE UUID: 7e5c48a7-a1f0-484a-9601-e845680220d3

Catalogue record

Date deposited: 03 Feb 2014 15:34
Last modified: 14 Mar 2024 15:55

Export record

Contributors

Author: Pejwaak Salimi
Thesis advisor: Michael Kraft

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×