The University of Southampton
University of Southampton Institutional Repository

Neutron star oscillations from starquakes

Neutron star oscillations from starquakes
Neutron star oscillations from starquakes
Glitches are sudden increases in the otherwise extremely regular spin rate of pulsars. One theory proposed to account for these glitches is the starquake model, in which the spinup is caused by a sudden rearrangement of the neutron star crust. Starquakes can be expected to excite some of the oscillation modes of the neutron star. These oscillations are of interest as a source of gravitational waves, and may also modify the pulsar radio emission. In this thesis we develop a toy model of the starquake and calculate which modes of the star are excited. We start by making some order-of-magnitude upper estimates on the energy made available by the starquake and the amplitude of the modes excited, before moving on to a more detailed calculation based on a specific model of the starquake in which all strain is lost instantaneously from the star at the glitch. To find out which modes are excited by the starquake, we construct initial data describing the change in the star at the glitch, and then project this against the basis of normal modes of the star. We first carry out this procedure for a simplified model in which the star has spun down to zero angular velocity before the starquake. We find that the majority of the energy released goes into a mode similar to the fundamental mode of a fluid star. Finally, we describe the extension of this model to the more realistic case where the star is rotating before the glitch. We calculate the change in the normal modes of the star to first order in the rotation; these are no longer orthogonal, but we construct a scheme that still enables us to project our initial data against this set of modes, and discuss some preliminary results of the model.
Keer, Lucy
b7ba12ad-7012-4596-a1a1-cc41f87d9b52
Keer, Lucy
b7ba12ad-7012-4596-a1a1-cc41f87d9b52
Jones, D.I.
b8f3e32c-d537-445a-a1e4-7436f472e160

Keer, Lucy (2014) Neutron star oscillations from starquakes. University of Southampton, Mathematics, Doctoral Thesis, 180pp.

Record type: Thesis (Doctoral)

Abstract

Glitches are sudden increases in the otherwise extremely regular spin rate of pulsars. One theory proposed to account for these glitches is the starquake model, in which the spinup is caused by a sudden rearrangement of the neutron star crust. Starquakes can be expected to excite some of the oscillation modes of the neutron star. These oscillations are of interest as a source of gravitational waves, and may also modify the pulsar radio emission. In this thesis we develop a toy model of the starquake and calculate which modes of the star are excited. We start by making some order-of-magnitude upper estimates on the energy made available by the starquake and the amplitude of the modes excited, before moving on to a more detailed calculation based on a specific model of the starquake in which all strain is lost instantaneously from the star at the glitch. To find out which modes are excited by the starquake, we construct initial data describing the change in the star at the glitch, and then project this against the basis of normal modes of the star. We first carry out this procedure for a simplified model in which the star has spun down to zero angular velocity before the starquake. We find that the majority of the energy released goes into a mode similar to the fundamental mode of a fluid star. Finally, we describe the extension of this model to the more realistic case where the star is rotating before the glitch. We calculate the change in the normal modes of the star to first order in the rotation; these are no longer orthogonal, but we construct a scheme that still enables us to project our initial data against this set of modes, and discuss some preliminary results of the model.

Text
lucykeerthesis.pdf - Other
Download (2MB)

More information

Published date: January 2014
Organisations: University of Southampton, Applied Mathematics

Identifiers

Local EPrints ID: 363269
URI: http://eprints.soton.ac.uk/id/eprint/363269
PURE UUID: 32fef930-3ec2-4f14-8fa7-609d6fd2a8e8
ORCID for D.I. Jones: ORCID iD orcid.org/0000-0002-0117-7567

Catalogue record

Date deposited: 31 Mar 2014 10:26
Last modified: 15 Mar 2024 03:01

Export record

Contributors

Author: Lucy Keer
Thesis advisor: D.I. Jones ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×