Aeroacoustic interactions of installed subsonic round jets
Aeroacoustic interactions of installed subsonic round jets
Additional noise sources are generated when an aircraft engine is mounted beneath a wing. The two main installation sources include: (1) reflection of the exhaust jet mixing noise from the underside of the wing, and (2) interaction between the turbulent jet plume and the trailing edge of the wing, or deployed flap. The strength, directivity and frequency content of these particular sources all serve to increase the time-averaged flyover aircraft noise level heard on the ground by residents beneath the flight path. As the bypass ratio and nacelle diameter of modern turbofan engines continues to increase, constraints on ground clearance are forcing under-wing-mounted engines to be coupled more closely to the wing and flap system, which, in turn, serves to accentuate both of these noise sources. Close-coupled nacelle-airframe designs are now a critical issue surrounding efforts to meet the future environmental targets for quieter civil aircraft.
This research is principally aimed at understanding and predicting the groundpropagating noise generated by the latter of these two installed jet noise sources. In order to characterise the jet-surface interaction noise source, however, it is first necessary to isolate it. A small 1/50th model-scale acoustic experiment, therefore, is conducted in a semi-anechoic university laboratory using a single stream jet installed beneath a flat plate. Both far-field acoustic and near-field plate surface pressure data are measured to investigate the jet-surface interaction noise source. Results from this fundamental experiment are then used to help drive a larger, and more realistic, 1/10th modelscale test campaign, at QinetiQ's Noise Test Facility, where 3D wing geometry effects, Reynolds number scaling effects and static-to-flight effects are investigated. A jet-flap impingement tonal noise phenomenon is also identified and investigated at particularly closely-coupled jet-wing configurations. Finally, the first version of a fast, semi-empirical engineering tool is developed to predict the additional noise caused by jet-wing interaction noise, under static ambient flow conditions. It is hoped that this tool will serve to inform future commercial aircraft design decisions and, thus, will help to protect the acoustic environment of residents living beneath flight paths.
Lawrence, Jack
59a5a96a-8824-4bae-a22a-739ad4ce9144
July 2014
Lawrence, Jack
59a5a96a-8824-4bae-a22a-739ad4ce9144
Self, Rod H.
8b96166d-fc06-48e7-8c76-ebb3874b0ef7
Lawrence, Jack
(2014)
Aeroacoustic interactions of installed subsonic round jets.
University of Southampton, Engineering and the Environment, Doctoral Thesis, 224pp.
Record type:
Thesis
(Doctoral)
Abstract
Additional noise sources are generated when an aircraft engine is mounted beneath a wing. The two main installation sources include: (1) reflection of the exhaust jet mixing noise from the underside of the wing, and (2) interaction between the turbulent jet plume and the trailing edge of the wing, or deployed flap. The strength, directivity and frequency content of these particular sources all serve to increase the time-averaged flyover aircraft noise level heard on the ground by residents beneath the flight path. As the bypass ratio and nacelle diameter of modern turbofan engines continues to increase, constraints on ground clearance are forcing under-wing-mounted engines to be coupled more closely to the wing and flap system, which, in turn, serves to accentuate both of these noise sources. Close-coupled nacelle-airframe designs are now a critical issue surrounding efforts to meet the future environmental targets for quieter civil aircraft.
This research is principally aimed at understanding and predicting the groundpropagating noise generated by the latter of these two installed jet noise sources. In order to characterise the jet-surface interaction noise source, however, it is first necessary to isolate it. A small 1/50th model-scale acoustic experiment, therefore, is conducted in a semi-anechoic university laboratory using a single stream jet installed beneath a flat plate. Both far-field acoustic and near-field plate surface pressure data are measured to investigate the jet-surface interaction noise source. Results from this fundamental experiment are then used to help drive a larger, and more realistic, 1/10th modelscale test campaign, at QinetiQ's Noise Test Facility, where 3D wing geometry effects, Reynolds number scaling effects and static-to-flight effects are investigated. A jet-flap impingement tonal noise phenomenon is also identified and investigated at particularly closely-coupled jet-wing configurations. Finally, the first version of a fast, semi-empirical engineering tool is developed to predict the additional noise caused by jet-wing interaction noise, under static ambient flow conditions. It is hoped that this tool will serve to inform future commercial aircraft design decisions and, thus, will help to protect the acoustic environment of residents living beneath flight paths.
Text
Final Thesis - JLTL.pdf
- Other
More information
Published date: July 2014
Organisations:
University of Southampton, Acoustics Group
Identifiers
Local EPrints ID: 367059
URI: http://eprints.soton.ac.uk/id/eprint/367059
PURE UUID: 5575cb31-82a9-4818-861d-4a1f6a87caa5
Catalogue record
Date deposited: 01 Oct 2014 13:10
Last modified: 14 Mar 2024 17:22
Export record
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics