The University of Southampton
University of Southampton Institutional Repository

Querying the web of data with low latency: high performance distributed SPARQL processing and benchmarking

Querying the web of data with low latency: high performance distributed SPARQL processing and benchmarking
Querying the web of data with low latency: high performance distributed SPARQL processing and benchmarking
The Web of Data extends the World Wide Web (WWW) in a way that applications can understand information and cooperate with humans on complex tasks. The basis of performing complex tasks is low latency queries over the Web of Data. The large scale and distributed nature of the Web of Data have negative impacts on several critical factors for efficient query processing, including fast data transmission between datasets, predictable data distribution and statistics that summarise and describe certain patterns in the data. Moreover, it is common on the Web of Data that the same resource is identified by multiple URIs. This phenomenon, named co-reference, potentially increases the complexity of query processing, and makes it even harder to obtain accurate statistics. With the aforementioned challenges, it is not clear whether it is possible to achieve efficient queries on the Web of Data on a large scale.

In this thesis, we explore techniques to improve the efficiency of querying the Web of Data on a large scale. More specifically, we investigate two typical scenarios on the Web of Data, which are: 1) the scenario in which all datasets provide detailed statistics that are possibly available on a large scale, and 2) the scenario in which co-reference is taken into account, and datasets’ statistics are not reliable. For each scenario we explore existing and novel optimisation techniques that are tailored for querying the Web of Data, as well as well developed techniques with careful adjustments.

For the scenario with detailed statistics we provide a scheme that implements a statistics query optimisation approach that requires detailed statistics, and intensively exploits parallelism. We propose an efficient algorithm called Parallel Sub-query Identification () to increase the degree of parallelism. () breaks a SPARQL query into sub-queries that can be processed in parallel while not increasing network traffic. We combine with dynamic programming to produce query plans with both minimum costs and a fair degree of parallelism. Furthermore, we develop a mechanism that maximally exploits bandwidth and computing power of datasets. For the scenario having co-reference and without reliable statistics we provide a scheme that implements a dynamic query optimisation approach that takes co-reference into account, and utilises runtime statistics to elevate query efficiency even further. We propose a model called Virtual Graph to transform a query and all its co-referent siblings into a single query with pre-defined bindings. Virtual Graph reduces the large number of outgoing and incoming requests that is required to process co-referent queries individually. Moreover, Virtual Graph enables query optimisers to find the optimal plan with respect to all co-referent queries as a whole. () is used in this scheme as well but provides a higher degree of parallelism with the help of runtime statistics. A Minimum-Spanning-Tree-based algorithm is used in this scheme as a result of using runtime statistics. The same parallel execution mechanism used in the previous scenario is adopted here as well.

In order to examine the effectiveness of our schemes in practice, we deploy the above approaches in two distributed SPARQL engines, LHD-s and LHD-d respectively. Both engines are implemented using a popular Java-based platform for building Semantic Web applications. They can be used as either standalone applications or integrated into existing systems that require quick response of Linked Data queries.

We also propose a scalable and flexible benchmark, called Distributed SPARQL Evaluation Framework (DSEF), for evaluating optimisation approaches in the Web of Data. DSEF adopts a expandable virtual-machine-based structure and provides a set of efficient tools to help easily set up RDF networks of arbitrary sizes. We further investigate the proportion and distribution of co-reference in the real world, based on which DESF is able to simulate co-reference for given RDF datasets. DSEF bases its soundness in the usage of widely accepted assessment data and queries.

By comparing both LHD-s and LHD-d with existing approaches using DSEF, we provide evidence that neither existing statistics provided by datasets nor cost estimation methods, are sufficiently accurate. On the other hand, dynamic optimisation using runtime statistics together with carefully tuned parallelism are promising for significantly reducing the latency of large scale queries on the Web of Data. We also demonstrate that () and Virtual Graph algorithms significantly increase query efficiency for queries with or without co-reference.

In summary, the contributions of this these include: 1) proposing two schemes for improving query efficiency in two typical scenarios in the Web of Data; 2) providing implementations, named LHD-s and LHD-d, for the two schemes respectively; 3) proposing a scalable and flexible evaluation framework for distributed SPARQL engines called DSEF; and 4) showing evidence that runtime-statistics-based dynamic optimisation with parallelism are promising to reduce latency of Linked Data queries on a large scale.
Wang, Xin
735297cd-af6a-430e-bf68-8550d1a2f60b
Wang, Xin
735297cd-af6a-430e-bf68-8550d1a2f60b
Tiropanis, Thanassis
d06654bd-5513-407b-9acd-6f9b9c5009d8

Wang, Xin (2014) Querying the web of data with low latency: high performance distributed SPARQL processing and benchmarking. University of Southampton, Physical Sciences and Engineering, Doctoral Thesis, 177pp.

Record type: Thesis (Doctoral)

Abstract

The Web of Data extends the World Wide Web (WWW) in a way that applications can understand information and cooperate with humans on complex tasks. The basis of performing complex tasks is low latency queries over the Web of Data. The large scale and distributed nature of the Web of Data have negative impacts on several critical factors for efficient query processing, including fast data transmission between datasets, predictable data distribution and statistics that summarise and describe certain patterns in the data. Moreover, it is common on the Web of Data that the same resource is identified by multiple URIs. This phenomenon, named co-reference, potentially increases the complexity of query processing, and makes it even harder to obtain accurate statistics. With the aforementioned challenges, it is not clear whether it is possible to achieve efficient queries on the Web of Data on a large scale.

In this thesis, we explore techniques to improve the efficiency of querying the Web of Data on a large scale. More specifically, we investigate two typical scenarios on the Web of Data, which are: 1) the scenario in which all datasets provide detailed statistics that are possibly available on a large scale, and 2) the scenario in which co-reference is taken into account, and datasets’ statistics are not reliable. For each scenario we explore existing and novel optimisation techniques that are tailored for querying the Web of Data, as well as well developed techniques with careful adjustments.

For the scenario with detailed statistics we provide a scheme that implements a statistics query optimisation approach that requires detailed statistics, and intensively exploits parallelism. We propose an efficient algorithm called Parallel Sub-query Identification () to increase the degree of parallelism. () breaks a SPARQL query into sub-queries that can be processed in parallel while not increasing network traffic. We combine with dynamic programming to produce query plans with both minimum costs and a fair degree of parallelism. Furthermore, we develop a mechanism that maximally exploits bandwidth and computing power of datasets. For the scenario having co-reference and without reliable statistics we provide a scheme that implements a dynamic query optimisation approach that takes co-reference into account, and utilises runtime statistics to elevate query efficiency even further. We propose a model called Virtual Graph to transform a query and all its co-referent siblings into a single query with pre-defined bindings. Virtual Graph reduces the large number of outgoing and incoming requests that is required to process co-referent queries individually. Moreover, Virtual Graph enables query optimisers to find the optimal plan with respect to all co-referent queries as a whole. () is used in this scheme as well but provides a higher degree of parallelism with the help of runtime statistics. A Minimum-Spanning-Tree-based algorithm is used in this scheme as a result of using runtime statistics. The same parallel execution mechanism used in the previous scenario is adopted here as well.

In order to examine the effectiveness of our schemes in practice, we deploy the above approaches in two distributed SPARQL engines, LHD-s and LHD-d respectively. Both engines are implemented using a popular Java-based platform for building Semantic Web applications. They can be used as either standalone applications or integrated into existing systems that require quick response of Linked Data queries.

We also propose a scalable and flexible benchmark, called Distributed SPARQL Evaluation Framework (DSEF), for evaluating optimisation approaches in the Web of Data. DSEF adopts a expandable virtual-machine-based structure and provides a set of efficient tools to help easily set up RDF networks of arbitrary sizes. We further investigate the proportion and distribution of co-reference in the real world, based on which DESF is able to simulate co-reference for given RDF datasets. DSEF bases its soundness in the usage of widely accepted assessment data and queries.

By comparing both LHD-s and LHD-d with existing approaches using DSEF, we provide evidence that neither existing statistics provided by datasets nor cost estimation methods, are sufficiently accurate. On the other hand, dynamic optimisation using runtime statistics together with carefully tuned parallelism are promising for significantly reducing the latency of large scale queries on the Web of Data. We also demonstrate that () and Virtual Graph algorithms significantly increase query efficiency for queries with or without co-reference.

In summary, the contributions of this these include: 1) proposing two schemes for improving query efficiency in two typical scenarios in the Web of Data; 2) providing implementations, named LHD-s and LHD-d, for the two schemes respectively; 3) proposing a scalable and flexible evaluation framework for distributed SPARQL engines called DSEF; and 4) showing evidence that runtime-statistics-based dynamic optimisation with parallelism are promising to reduce latency of Linked Data queries on a large scale.

Text
Wang.pdf - Other
Download (6MB)

More information

Published date: April 2014
Organisations: University of Southampton, Web & Internet Science

Identifiers

Local EPrints ID: 368261
URI: http://eprints.soton.ac.uk/id/eprint/368261
PURE UUID: 7c363b92-621e-4c97-8a5d-05052f7347fd
ORCID for Thanassis Tiropanis: ORCID iD orcid.org/0000-0002-6195-2852

Catalogue record

Date deposited: 24 Oct 2014 11:58
Last modified: 15 Mar 2024 03:31

Export record

Contributors

Author: Xin Wang
Thesis advisor: Thanassis Tiropanis ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×