The Penrose singularity theorem in regularity C^{1,1}
The Penrose singularity theorem in regularity C^{1,1}
We extend the validity of the Penrose singularity theorem to spacetime metrics of regularity C^{1,1}. The proof is based on regularization techniques, combined with recent results in low regularity causality theory
1-13
Kunzinger, M.
553c5264-8f37-4e7c-8316-09e7562fbbf7
Steinbauer, R.
03564261-185d-4e1d-97ed-a7633d552a34
Vickers, J.A.
719cd73f-c462-417d-a341-0b042db88634
14 July 2015
Kunzinger, M.
553c5264-8f37-4e7c-8316-09e7562fbbf7
Steinbauer, R.
03564261-185d-4e1d-97ed-a7633d552a34
Vickers, J.A.
719cd73f-c462-417d-a341-0b042db88634
Kunzinger, M., Steinbauer, R. and Vickers, J.A.
(2015)
The Penrose singularity theorem in regularity C^{1,1}.
Classical and Quantum Gravity, 32 (15), , [155010].
(doi:10.1088/0264-9381/32/15/155010).
Abstract
We extend the validity of the Penrose singularity theorem to spacetime metrics of regularity C^{1,1}. The proof is based on regularization techniques, combined with recent results in low regularity causality theory
Text
__soton.ac.uk_ude_personalfiles_users_jav_mydesktop_Penrose Sinularity Theorem.pdf
- Accepted Manuscript
More information
Accepted/In Press date: 17 June 2015
e-pub ahead of print date: 14 July 2015
Published date: 14 July 2015
Organisations:
Applied Mathematics
Identifiers
Local EPrints ID: 380451
URI: http://eprints.soton.ac.uk/id/eprint/380451
ISSN: 0264-9381
PURE UUID: ee629268-cc3a-43f0-acb3-296e73790d74
Catalogue record
Date deposited: 11 Sep 2015 07:56
Last modified: 15 Mar 2024 02:34
Export record
Altmetrics
Contributors
Author:
M. Kunzinger
Author:
R. Steinbauer
Author:
J.A. Vickers
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics