The University of Southampton
University of Southampton Institutional Repository

Quantum-assisted multi-user wireless systems

Quantum-assisted multi-user wireless systems
Quantum-assisted multi-user wireless systems
The high complexity of numerous optimal classical communication schemes, such as the Maximum Likelihood (ML) and Maximum A posteriori Probability (MAP) Multi-User Detector (MUD) designed for coherent detection or the ML and MAP Multiple-Symbol Differential Detectors (MSDD) conceived for non-coherent receivers often prevents their practical implementation. In this thesis we commence with a review and tutorial on Quantum Search Algorithms (QSA) and propose a number of hard-output and iterative Quantum-assisted MUDs (QMUD) and MSDDs (QMSDD).

We employ a QSA, termed as the Durr-Hyer Algorithm (DHA) that finds the minimum of a function in order to perform near-optimal detection with quadratic reduction in the computational complexity, when compared to that of the ML MUD / MSDD. Two further techniques conceived for reducing the complexity of the DHA-based Quantum-assisted MUD (QMUD) are also proposed. These novel QMUDs / QMSDDs are employed in the uplink of various multiple access systems, such as Direct Sequence Code Division Multiple Access systems, Space Division Multiple Access systems as well as in Direct-Sequence Spreading and Slow Subcarrier Hopping SDMA systems amalgamated with Orthogonal Frequency Division Multiplexing and Interleave Division Multiple Access systems.

Furthermore, we follow a quantum approach to achieve the same performance as the optimal Soft Input Soft-Output (SISO) classical detectors by replacing them with a quantum algorithm, which estimates the weighted sum of all the evaluations of a function. We propose a SISO QMUD / QMSDD scheme, which is the quantum-domain equivalent of the MAP MUD / MSDD. Both our EXtrinsic Information Transfer (EXIT) charts and Bit Error Ratio (BER) curves show that the computational complexity of the proposed QMUD / QMSDD is significantly lower than that of the MAP MUD / MSDD, whilst their performance remains equivalent. Moreover, we propose two additional families of iterative DHA-based QMUD / QMSDDs for performing near-optimal MAP detection exhibiting an even lower tunable complexity than the QWSA QMUD. Several variations of the proposed QMUD / QMSDDs have been developed and they are shown to perform better than the state-of-the-art low-complexity MUDs / MSDDs at a given complexity. Their iterative decoding performance is investigated with the aid of non-Gaussian EXIT charts.
University of Southampton
Botsinis, Panagiotis
d7927fb0-95ca-4969-9f8c-1c0455524a1f
Botsinis, Panagiotis
d7927fb0-95ca-4969-9f8c-1c0455524a1f
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Botsinis, Panagiotis (2015) Quantum-assisted multi-user wireless systems. University of Southampton, Physical Sciences and Engineering, Doctoral Thesis, 314pp.

Record type: Thesis (Doctoral)

Abstract

The high complexity of numerous optimal classical communication schemes, such as the Maximum Likelihood (ML) and Maximum A posteriori Probability (MAP) Multi-User Detector (MUD) designed for coherent detection or the ML and MAP Multiple-Symbol Differential Detectors (MSDD) conceived for non-coherent receivers often prevents their practical implementation. In this thesis we commence with a review and tutorial on Quantum Search Algorithms (QSA) and propose a number of hard-output and iterative Quantum-assisted MUDs (QMUD) and MSDDs (QMSDD).

We employ a QSA, termed as the Durr-Hyer Algorithm (DHA) that finds the minimum of a function in order to perform near-optimal detection with quadratic reduction in the computational complexity, when compared to that of the ML MUD / MSDD. Two further techniques conceived for reducing the complexity of the DHA-based Quantum-assisted MUD (QMUD) are also proposed. These novel QMUDs / QMSDDs are employed in the uplink of various multiple access systems, such as Direct Sequence Code Division Multiple Access systems, Space Division Multiple Access systems as well as in Direct-Sequence Spreading and Slow Subcarrier Hopping SDMA systems amalgamated with Orthogonal Frequency Division Multiplexing and Interleave Division Multiple Access systems.

Furthermore, we follow a quantum approach to achieve the same performance as the optimal Soft Input Soft-Output (SISO) classical detectors by replacing them with a quantum algorithm, which estimates the weighted sum of all the evaluations of a function. We propose a SISO QMUD / QMSDD scheme, which is the quantum-domain equivalent of the MAP MUD / MSDD. Both our EXtrinsic Information Transfer (EXIT) charts and Bit Error Ratio (BER) curves show that the computational complexity of the proposed QMUD / QMSDD is significantly lower than that of the MAP MUD / MSDD, whilst their performance remains equivalent. Moreover, we propose two additional families of iterative DHA-based QMUD / QMSDDs for performing near-optimal MAP detection exhibiting an even lower tunable complexity than the QWSA QMUD. Several variations of the proposed QMUD / QMSDDs have been developed and they are shown to perform better than the state-of-the-art low-complexity MUDs / MSDDs at a given complexity. Their iterative decoding performance is investigated with the aid of non-Gaussian EXIT charts.

Text
Botsinis.pdf - Version of Record
Available under License University of Southampton Thesis Licence.
Download (10MB)

More information

Published date: March 2015
Organisations: University of Southampton, Southampton Wireless Group

Identifiers

Local EPrints ID: 381235
URI: http://eprints.soton.ac.uk/id/eprint/381235
PURE UUID: 250ac810-b78f-4cd5-a2c9-6361b0320355
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 18 Sep 2015 10:50
Last modified: 15 Mar 2024 05:21

Export record

Contributors

Author: Panagiotis Botsinis
Thesis advisor: Lajos Hanzo ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×