Atkin, Dale M. (1998) Photonic crystals in planar waveguides. University of Southampton, Department of Electronics and Computer Science, Doctoral Thesis, 132pp.
Abstract
In this thesis the properties of waveguide modes in photonic crystal planar waveguides are considered. These are waveguides that have been etched with multi-dimensional gratings to create new wavelength dispersive and spatially dispersive behaviours. Analytical models have been developed for the modes in one and two-dimensional photonic crystal waveguides. These describe many of the rich phenomena that may be observed. Weak two-dimensional photonic crystal planar waveguides have been fabricated and their properties have been measured with a specially developed conical prism coupling technique.
This thesis demonstrates the advantages of combining photonic crystals with planar waveguides. While future lithographic systems will have sufficient resolution to incorporate photonic crystal regions in integrated optical devices, it has been shown that the waveguide geometry increases the actual grating period required for optical band gaps and so lessens technological difficulties. It is also shown that there are stationary modes which could act as microresonators and that ranges of modes can be suppressed in multimode waveguides. Prism coupling has demonstrated the strong dispersive and frequency selective behaviour of weak photonic crystal waveguides.
The future application of this work to efficient, broadband, nonlinear wavelength conversion is proposed.
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Faculties (pre 2011 reorg) > Faculty of Engineering Science & Maths (pre 2011 reorg) > Optoelectronics Research Centre (pre 2011 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > Zepler Institute for Photonics and Nanoelectronics > Optoelectronics Research Centre (pre 2011 reorg)
Zepler Institute for Photonics and Nanoelectronics > Optoelectronics Research Centre (pre 2011 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.