The University of Southampton
University of Southampton Institutional Repository

Sampling power-law distributions

Pickering, G., Bull, J.M. and Sanderson, D.J. (1995) Sampling power-law distributions Tectonophysics, 248, (1-2), pp. 1-20. (doi:10.1016/0040-1951(95)00030-Q).

Record type: Article

Abstract

Power-law distributions describe many phenomena related to rock fracture. Data collected to measure the parameters of such distributions only represent samples from some underlying population. Without proper consideration of the scale and size limitations of such data, estimates of the population parameters, particularly the exponent D, are likely to be biased. A Monte Carlo simulation of the sampling and analysis process has been made, to test the accuracy of the most common methods of analysis and to quantify the confidence interval for D. The cumulative graph is almost always biased by the scale limitations of the data and can appear non-linear, even when the sample is ideally power law. An iterative correction procedure is outlined which is generally successful in giving unbiased estimates of D. A standard discrete frequency graph has been found to be highly inaccurate, and its use is not recommended. The methods normally used for earthquake magnitudes, such as a discrete frequency graph of logs of values and various maximum likelihood formulations can be used for other types of data, and with care accurate results are possible. Empirical equations are given for the confidence limits on estimates of D, as a function of sample size, the scale range of the data and the method of analysis used. The predictions of the simulations are found to match the results from real sample D-value distributions. The application of the analysis techniques is illustrated with data examples from earthquake and fault population studies.

PDF pickeringetal.pdf - Accepted Manuscript
Download (1MB)

More information

Published date: 1995
Keywords: power-law distributions, Monte Carlo Simulation, Estimation of D values, Sample Size, Biasing, Rock Fracture, fractal distributions, correcting fractal distributions, monte carlo simulation, confidence limits, fractal dimension

Identifiers

Local EPrints ID: 40880
URI: http://eprints.soton.ac.uk/id/eprint/40880
ISSN: 0040-1951
PURE UUID: 97c34016-fdff-4a4d-ba24-62551d29cfdc

Catalogue record

Date deposited: 14 Jul 2006
Last modified: 17 Jul 2017 15:33

Export record

Altmetrics

Contributors

Author: G. Pickering
Author: J.M. Bull
Author: D.J. Sanderson

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×