The University of Southampton
University of Southampton Institutional Repository

Recent developments in organic redox flow batteries: a critical review

Recent developments in organic redox flow batteries: a critical review
Recent developments in organic redox flow batteries: a critical review
Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.
Aqueous, non-aqueous, organic, redox couples
0378-7753
Ponce De Leon Albarran, Carlos
508a312e-75ff-4bcb-9151-dacc424d755c
Walsh, Frank
309528e7-062e-439b-af40-9309bc91efb2
Ponce De Leon Albarran, Carlos
508a312e-75ff-4bcb-9151-dacc424d755c
Walsh, Frank
309528e7-062e-439b-af40-9309bc91efb2

Ponce De Leon Albarran, Carlos and Walsh, Frank (2017) Recent developments in organic redox flow batteries: a critical review. Journal of Power Sources.

Record type: Article

Abstract

Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

Text
Recent developments in organic redox flow batteries-a critical review - Accepted Manuscript
Download (6MB)

More information

Accepted/In Press date: 18 May 2017
e-pub ahead of print date: 12 June 2017
Keywords: Aqueous, non-aqueous, organic, redox couples
Organisations: Energy Technology Group, Southampton Marine & Maritime Institute

Identifiers

Local EPrints ID: 411736
URI: http://eprints.soton.ac.uk/id/eprint/411736
ISSN: 0378-7753
PURE UUID: 74eb62db-1a60-403e-88e0-e05e691b45b1
ORCID for Carlos Ponce De Leon Albarran: ORCID iD orcid.org/0000-0002-1907-5913

Catalogue record

Date deposited: 23 Jun 2017 16:31
Last modified: 07 Oct 2020 04:08

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×