The University of Southampton
University of Southampton Institutional Repository

A joint row and column action method for cone-beam computed tomography

A joint row and column action method for cone-beam computed tomography
A joint row and column action method for cone-beam computed tomography
The inversion of linear systems is fundamental in Computed Tomography (CT) reconstruction. Computational challenges arise when trying to invert large linear systems, as limited computing resources mean that only part of the system can be kept in computer memory at any one time. In linear tomographic inversion problems such as x-ray tomography, even a standard scan can produce millions of individual measurements and the reconstruction of x-ray attenuation profiles typically requires the estimation of a million attenuation coefficients. To deal with the large data sets encountered in real applications and to efficiently utilise modern graphics processing unit (GPU) based computing architectures, combinations of iterative reconstruction algorithms and parallel computing schemes are increasingly applied. Whilst different parallel methods have been proposed, individual computations currently need to access either the entire set of observations or estimated x-ray absorptions, which can be prohibitive in many realistic applications. We present a fully parallelizable CT image reconstruction algorithm where each computation node works on arbitrary partial subsets of the data and the reconstructed volume. We further develop a non-homogeneously randomised selection criteria which guarantees that sub-matrices of the system matrix are selected more frequently if they are dense, thus maximising information flow through the algorithm. We compare our algorithm with block alternating direction method of multipliers (block ADMM) and show that our method is significantly faster for CT reconstruction.
599-608
Gao, Yushan
3037efe6-c1b0-411e-9606-5cf901555d96
Blumensath, Thomas
470d9055-0373-457e-bf80-4389f8ec4ead
Gao, Yushan
3037efe6-c1b0-411e-9606-5cf901555d96
Blumensath, Thomas
470d9055-0373-457e-bf80-4389f8ec4ead

Gao, Yushan and Blumensath, Thomas (2018) A joint row and column action method for cone-beam computed tomography. IEEE Transactions on Computational Imaging, 4 (4), 599-608. (doi:10.1109/TCI.2018.2857446).

Record type: Article

Abstract

The inversion of linear systems is fundamental in Computed Tomography (CT) reconstruction. Computational challenges arise when trying to invert large linear systems, as limited computing resources mean that only part of the system can be kept in computer memory at any one time. In linear tomographic inversion problems such as x-ray tomography, even a standard scan can produce millions of individual measurements and the reconstruction of x-ray attenuation profiles typically requires the estimation of a million attenuation coefficients. To deal with the large data sets encountered in real applications and to efficiently utilise modern graphics processing unit (GPU) based computing architectures, combinations of iterative reconstruction algorithms and parallel computing schemes are increasingly applied. Whilst different parallel methods have been proposed, individual computations currently need to access either the entire set of observations or estimated x-ray absorptions, which can be prohibitive in many realistic applications. We present a fully parallelizable CT image reconstruction algorithm where each computation node works on arbitrary partial subsets of the data and the reconstructed volume. We further develop a non-homogeneously randomised selection criteria which guarantees that sub-matrices of the system matrix are selected more frequently if they are dense, thus maximising information flow through the algorithm. We compare our algorithm with block alternating direction method of multipliers (block ADMM) and show that our method is significantly faster for CT reconstruction.

Text
Coordinate-Reduced Steepest Gradient Descent for Computed Tomography Parallel Reconstruction - Author's Original
Download (1MB)
Text
Distributed Computation of Linear Inverse Problems with Application to Computed Tomography - Author's Original
Download (3MB)
Text
08412547 - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)

More information

Submitted date: 1 September 2017
Accepted/In Press date: 13 July 2018
e-pub ahead of print date: 18 July 2018
Published date: December 2018
Additional Information: Please note: the authors' original of this article was originally entitled: 'Coordinate-reduced steepest gradient descent for computed tomography parallel reconstruction'

Identifiers

Local EPrints ID: 415667
URI: http://eprints.soton.ac.uk/id/eprint/415667
PURE UUID: 1cae1710-a332-4b04-8e0d-17c5045c202c
ORCID for Thomas Blumensath: ORCID iD orcid.org/0000-0002-7489-265X

Catalogue record

Date deposited: 17 Nov 2017 17:30
Last modified: 24 Mar 2022 02:39

Export record

Altmetrics

Contributors

Author: Yushan Gao

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×