Wang, Xuan, Chu, Bing and Rogers, Eric (2017) Higher-order iterative learning control law design using linear repetitive process theory: convergence and robustness. IFAC-PapersOnLine, 50 (1), 3123-3128. (doi:10.1016/j.ifacol.2017.08.320).
Abstract
Iterative learning control has been developed for processes or systems that complete the same finite duration task over and over again. The mode of operation is that after each execution is complete the system resets to the starting location, the next execution is completed and so on. Each execution is known as a trial and its duration is termed the trial length. Once each trial is complete the information generated is available for use in computing the control input for the next trial. This paper uses the repetitive process setting to develop new results on the design of higher-order ILC control laws for discrete dynamics. The new results include conditions that guarantee error convergence and design in the presence of model uncertainty.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Electronics & Computer Science (pre 2018 reorg) > Vision, Learning and Control (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg) > Vision, Learning and Control (pre 2018 reorg)
School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg) > Vision, Learning and Control (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Vision, Learning and Control > Vision, Learning and Control (pre 2018 reorg)
School of Electronics and Computer Science > Vision, Learning and Control > Vision, Learning and Control (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Electronics & Computer Science (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg)
School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.