Li, Menglong, Tudor, Michael, Torah, Russel and Beeby, Stephen (2018) Stress analysis and optimization of a Flip chip on flex electronic packaging method for functional electronic textiles. IEEE Transactions on Components Packaging and Manufacturing Technology, 8 (2), 186-194. (doi:10.1109/TCPMT.2017.2780626).
Abstract
A method for packaging integrated circuit (IC) silicon die in thin flexible circuits has been investigated that enables circuits to be subsequently integrated within textile yarns. This paper presents an investigation into the required materials and component dimensions in order to maximize the reliability of the packaging method. Two die sizes of 3.5 mm x 8 mm x 0.53 mm and 2 mm x 2mm x 0.1 mm have been simulated and evaluated experimentally under shear load and during bending. The shear and bending experimental results show good agreement with the simulation results and verify the simulated optimal thickness of the adhesive layer. Three under-fill adhesives (EP30AO, EP37-3FLF and Epo-Tek 301 2fl), three highly flexible adhesive (Loctite 4860, Loctite 480 and Loctite 4902) and three substrates (Kapton, Mylar and PEEK) have been evaluated and the optimal thickness of each is found. The Kapton substrate, together with the EP37-3FLF adhesive, were identified as the best materials combination, with the optimum under-fill and substrate thickness identified as 0.05 mm.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2011 reorg) > Faculty of Engineering Science & Maths (pre 2011 reorg) > Electronics & Computer Science (pre 2011 reorg) > LSL (pre 2011 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Electronics & Computer Science (pre 2011 reorg) > LSL (pre 2011 reorg)
School of Electronics and Computer Science > Electronics & Computer Science (pre 2011 reorg) > LSL (pre 2011 reorg) - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Electronics & Computer Science (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg)
School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.