Analysis of resonance effect for a railway track on a layered ground
Analysis of resonance effect for a railway track on a layered ground
When a train runs on soft ground it can approach or even exceed the speed of surface waves in the ground. Under such conditions the amplitudes of the track response increase considerably. Moreover, a resonance-like phenomenon can occur in which a clear oscillation trail can be observed behind the moving axle loads. An investigation is presented of this resonance frequency and the critical speed effect for a track on a layered half-space subject to a moving load. Three different methods are used to investigate this resonance frequency: (i) the spectrum of the response to a moving load, (ii) analysis of the dispersion curves of the ground, and (iii) frequency analysis of the response to a stationary load. A parameter study is presented of a layered half-space ground with different P-wave speeds, S-wave speeds, and depth of the upper layer. The critical speeds are found in each case; in such a layered ground, the critical speed is greater than the Rayleigh wave speed of the soft upper layer due to the influence of the underlying half-space. The oscillating frequencies are shown to vary with the speed of the moving load, tending to reduce when the load speed increases. The P-wave speeds of both the upper layer and the underlying half-space are found to have negligible influence on the critical velocity and on the oscillating frequency; the S-wave speed of the half-space has only a small influence. Larger differences are found when the depth of the layer is varied. Finally, a formula for calculating this resonance frequency is proposed.
51-62
Shih, J.-Y.
0f804afa-8ea0-496f-a845-1a0ef01019e2
Thompson, D.J.
bca37fd3-d692-4779-b663-5916b01edae5
Ntotsios, E.
877c3350-0497-4471-aa97-c101df72e05e
Shih, J.-Y.
0f804afa-8ea0-496f-a845-1a0ef01019e2
Thompson, D.J.
bca37fd3-d692-4779-b663-5916b01edae5
Ntotsios, E.
877c3350-0497-4471-aa97-c101df72e05e
Shih, J.-Y., Thompson, D.J. and Ntotsios, E.
(2018)
Analysis of resonance effect for a railway track on a layered ground.
Transportation Geotechnics, 16, .
(doi:10.1016/j.trgeo.2018.07.001).
Abstract
When a train runs on soft ground it can approach or even exceed the speed of surface waves in the ground. Under such conditions the amplitudes of the track response increase considerably. Moreover, a resonance-like phenomenon can occur in which a clear oscillation trail can be observed behind the moving axle loads. An investigation is presented of this resonance frequency and the critical speed effect for a track on a layered half-space subject to a moving load. Three different methods are used to investigate this resonance frequency: (i) the spectrum of the response to a moving load, (ii) analysis of the dispersion curves of the ground, and (iii) frequency analysis of the response to a stationary load. A parameter study is presented of a layered half-space ground with different P-wave speeds, S-wave speeds, and depth of the upper layer. The critical speeds are found in each case; in such a layered ground, the critical speed is greater than the Rayleigh wave speed of the soft upper layer due to the influence of the underlying half-space. The oscillating frequencies are shown to vary with the speed of the moving load, tending to reduce when the load speed increases. The P-wave speeds of both the upper layer and the underlying half-space are found to have negligible influence on the critical velocity and on the oscillating frequency; the S-wave speed of the half-space has only a small influence. Larger differences are found when the depth of the layer is varied. Finally, a formula for calculating this resonance frequency is proposed.
Text
Analysis of resonance effect for a railway track on a layered ground
- Accepted Manuscript
More information
Accepted/In Press date: 2 July 2018
e-pub ahead of print date: 3 July 2018
Identifiers
Local EPrints ID: 422078
URI: http://eprints.soton.ac.uk/id/eprint/422078
ISSN: 2214-3912
PURE UUID: 6a9e1d1a-980c-44e9-ac34-1ef6e8b1df78
Catalogue record
Date deposited: 16 Jul 2018 16:30
Last modified: 16 Mar 2024 06:52
Export record
Altmetrics
Contributors
Author:
J.-Y. Shih
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics