Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies
Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies
Aims
There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after ‘recalibration’, a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied.
Methods and results
Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS). We calculated measures of risk discrimination and calibration, and modelled clinical implications of initiating statin therapy in people judged to be at ‘high’ 10 year CVD risk. Original risk algorithms were recalibrated using the risk factor profile and CVD incidence of target populations. The four algorithms had similar risk discrimination. Before recalibration, FRS, SCORE, and PCE over-predicted CVD risk on average by 10%, 52%, and 41%, respectively, whereas RRS under-predicted by 10%. Original versions of algorithms classified 29–39% of individuals aged ≥40 years as high risk. By contrast, recalibration reduced this proportion to 22–24% for every algorithm. We estimated that to prevent one CVD event, it would be necessary to initiate statin therapy in 44–51 such individuals using original algorithms, in contrast to 37–39 individuals with recalibrated algorithms.
Conclusion
Before recalibration, the clinical performance of four widely used CVD risk algorithms varied substantially. By contrast, simple recalibration nearly equalized their performance and improved modelled targeting of preventive action to clinical need.
621–631
Pennells, L.
158f22ec-9cfc-4e24-b2f2-113632001fa5
Kaptoge, S.
36f96b0d-441a-4d08-b55b-21e7b2df65c4
Wood, A
7ba44a94-f506-4159-b7c5-c08f8e610025
Sweeting, M.
09eee65c-f5ca-4c36-a86f-6e0e240b2703
Zhao, X.
c32d0dd5-3ac6-4c9c-b41e-95baa08c7472
White, I.
f128eb16-1734-4776-a59b-2fc26deb891f
Burgess, Stephen
3ee737c1-d92c-4b2f-8279-c500f3116c92
Willeit, P.
8385de8e-c187-47c6-94b1-274b7a2f1058
Bolton, T.
3ccb2ae4-8c33-445f-89c5-72e4f7418da6
Moons, Karel G.M.
2ab0cb89-1666-46d1-8716-80f55eae539a
van der Schouw, Y.T.
13899835-7fbb-48ea-aea3-626c6b74e02d
Selmer, R.
45eff929-9efe-4e02-bd42-9f20d278cd85
Khaw, K-T
89ff6376-d190-469a-850c-c07998e8b2bc
Gudnason, V.
174d32af-83c9-4b84-a29b-7855843e2a21
Assman, G.
4b588e6b-9617-47d1-aaaa-82b154638dab
Amouyel, P.
32c2fe95-c2fd-43eb-908b-811d101ff54d
Salomaa, V.
8e74714e-dc70-4a6a-a0a6-cc61afc084b7
Kivimaki, M.
87a6c408-c8b5-48dc-b2c0-e1f425b91dc6
Nordestgaard, Børge G.
a0901c2b-92c4-4103-ace8-1e2431a1b93e
Blaha, M.J.
c7f50176-88d2-47d4-a111-92c0004e2e51
Kuller, L.H.
dff36e40-6ab3-44e9-b754-c73f6f681d58
Brenner, H.
7448971a-ffb1-47df-8a64-e224106e46be
Gillum, R.F.
f9ad519e-1f66-4b5d-b5bc-8a438d365576
Meisinger, C.
19aeecd5-572c-4a8c-8082-9e5d0021d497
Ford, I.
02bcd593-64e4-4cb9-87e3-9a6efe4d155c
Knuiman, M.W.
7eb322f8-99af-46d0-93f8-aa97bd2b3054
Rosengren, A.
ce70dd37-102a-46ac-8177-1c2f8f526089
Cooper, Cyrus
e05f5612-b493-4273-9b71-9e0ce32bdad6
Emerging Risk Factors Collaboration
14 February 2019
Pennells, L.
158f22ec-9cfc-4e24-b2f2-113632001fa5
Kaptoge, S.
36f96b0d-441a-4d08-b55b-21e7b2df65c4
Wood, A
7ba44a94-f506-4159-b7c5-c08f8e610025
Sweeting, M.
09eee65c-f5ca-4c36-a86f-6e0e240b2703
Zhao, X.
c32d0dd5-3ac6-4c9c-b41e-95baa08c7472
White, I.
f128eb16-1734-4776-a59b-2fc26deb891f
Burgess, Stephen
3ee737c1-d92c-4b2f-8279-c500f3116c92
Willeit, P.
8385de8e-c187-47c6-94b1-274b7a2f1058
Bolton, T.
3ccb2ae4-8c33-445f-89c5-72e4f7418da6
Moons, Karel G.M.
2ab0cb89-1666-46d1-8716-80f55eae539a
van der Schouw, Y.T.
13899835-7fbb-48ea-aea3-626c6b74e02d
Selmer, R.
45eff929-9efe-4e02-bd42-9f20d278cd85
Khaw, K-T
89ff6376-d190-469a-850c-c07998e8b2bc
Gudnason, V.
174d32af-83c9-4b84-a29b-7855843e2a21
Assman, G.
4b588e6b-9617-47d1-aaaa-82b154638dab
Amouyel, P.
32c2fe95-c2fd-43eb-908b-811d101ff54d
Salomaa, V.
8e74714e-dc70-4a6a-a0a6-cc61afc084b7
Kivimaki, M.
87a6c408-c8b5-48dc-b2c0-e1f425b91dc6
Nordestgaard, Børge G.
a0901c2b-92c4-4103-ace8-1e2431a1b93e
Blaha, M.J.
c7f50176-88d2-47d4-a111-92c0004e2e51
Kuller, L.H.
dff36e40-6ab3-44e9-b754-c73f6f681d58
Brenner, H.
7448971a-ffb1-47df-8a64-e224106e46be
Gillum, R.F.
f9ad519e-1f66-4b5d-b5bc-8a438d365576
Meisinger, C.
19aeecd5-572c-4a8c-8082-9e5d0021d497
Ford, I.
02bcd593-64e4-4cb9-87e3-9a6efe4d155c
Knuiman, M.W.
7eb322f8-99af-46d0-93f8-aa97bd2b3054
Rosengren, A.
ce70dd37-102a-46ac-8177-1c2f8f526089
Cooper, Cyrus
e05f5612-b493-4273-9b71-9e0ce32bdad6