The University of Southampton
University of Southampton Institutional Repository

Design and fabrication of novel polymer antiresonant waveguides

Design and fabrication of novel polymer antiresonant waveguides
Design and fabrication of novel polymer antiresonant waveguides
Over the past twenty years, hollow core fibres have been one of the most exciting innovations in optical fibre technology. Hollow core fibres have extended the optical properties achievable in conventional step-index fibres and open up new applications such as non-linear optics. Despite numerous breakthroughs, the fabrication process of such fibres remains time consuming and costly.

This thesis describes the use of additive manufacturing as a fabrication method for hollow core fibre preforms and waveguides. I explore the use of polymers, which can be 3D printed using the inexpensive fused deposition modelling technique. As polymers have high absorption across the electromagnetic spectrum, I focus on hollow core fibre designs. Using finite element simulations, I propose a novel antiresonant fibre design that can be fabricated using additive manufacturing. The detailed simulations of this design give a new understanding of the effect of the cladding elements' curvature has on the leakage loss of the structure.

Several fibre preforms are successfully fabricated using different polymers. To understand the drawing process required for these materials, systematic drawing experiments are performed to aid the understanding of the fundamental differences between glass and polymer fibre fabrication. I developed a fluid dynamics model that is validated experimentally to predict the polymer capillary drawing process, taking into account the Non-Newtonian shear-thinning behaviour of these materials.

To further demonstrate the capabilities of additive manufacturing for photonic components, I design, fabricate and characterise a novel hollow core waveguide for the terahertz regime. These waveguides have the potential to replace costly terahertz components and detailed simulations suggest their attenuation can be improved by orders of magnitude with improvements in the quality of the fabrication process.
University of Southampton
Van Putten, Lieke
64513739-3d2d-428f-bd09-3c1162f10313
Van Putten, Lieke
64513739-3d2d-428f-bd09-3c1162f10313
Poletti, Francesco
9adcef99-5558-4644-96d7-ce24b5897491

Van Putten, Lieke (2019) Design and fabrication of novel polymer antiresonant waveguides. University of Southampton, Doctoral Thesis, 149pp.

Record type: Thesis (Doctoral)

Abstract

Over the past twenty years, hollow core fibres have been one of the most exciting innovations in optical fibre technology. Hollow core fibres have extended the optical properties achievable in conventional step-index fibres and open up new applications such as non-linear optics. Despite numerous breakthroughs, the fabrication process of such fibres remains time consuming and costly.

This thesis describes the use of additive manufacturing as a fabrication method for hollow core fibre preforms and waveguides. I explore the use of polymers, which can be 3D printed using the inexpensive fused deposition modelling technique. As polymers have high absorption across the electromagnetic spectrum, I focus on hollow core fibre designs. Using finite element simulations, I propose a novel antiresonant fibre design that can be fabricated using additive manufacturing. The detailed simulations of this design give a new understanding of the effect of the cladding elements' curvature has on the leakage loss of the structure.

Several fibre preforms are successfully fabricated using different polymers. To understand the drawing process required for these materials, systematic drawing experiments are performed to aid the understanding of the fundamental differences between glass and polymer fibre fabrication. I developed a fluid dynamics model that is validated experimentally to predict the polymer capillary drawing process, taking into account the Non-Newtonian shear-thinning behaviour of these materials.

To further demonstrate the capabilities of additive manufacturing for photonic components, I design, fabricate and characterise a novel hollow core waveguide for the terahertz regime. These waveguides have the potential to replace costly terahertz components and detailed simulations suggest their attenuation can be improved by orders of magnitude with improvements in the quality of the fabrication process.

Text
ethesis Lieke van Putten - Version of Record
Available under License University of Southampton Thesis Licence.
Download (16MB)

More information

Published date: February 2019

Identifiers

Local EPrints ID: 428646
URI: http://eprints.soton.ac.uk/id/eprint/428646
PURE UUID: e67be1fc-03a8-4d91-b3e7-8dffed2cd801
ORCID for Lieke Van Putten: ORCID iD orcid.org/0000-0002-4428-1727
ORCID for Francesco Poletti: ORCID iD orcid.org/0000-0002-1000-3083

Catalogue record

Date deposited: 05 Mar 2019 17:30
Last modified: 16 Mar 2024 03:53

Export record

Contributors

Author: Lieke Van Putten ORCID iD
Thesis advisor: Francesco Poletti ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×