The University of Southampton
University of Southampton Institutional Repository

Dataset for Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi

Dataset for Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi
Dataset for Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi
This dataset supports the publication: Grant-Jacob, J., Xie, Y., MacKay, B. S., Praeger, M., McDonnell, M. D. T., Heath, D. J., ... Mills, B. (2019). Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi. Environmental Research Communications, 1(1) https://doi.org/10.1088/2515-7620/ab14c9
University of Southampton
Grant-Jacob, James
c5d144d8-3c43-4195-8e80-edd96bfda91b
Xie, Yunhui
f2c3b0e4-8650-4e04-80e5-04505f45bdd6
MacKay, Benita, Scout
318d298f-5b38-43d7-b30d-8cd07f69acd4
Praeger, Matthew
84575f28-4530-4f89-9355-9c5b6acc6cac
McDonnell, Michael, David Tom
bc7b6423-bd77-424d-81e7-4e5448e926cb
Heath, Daniel J
d53c269d-90d2-41e6-aa63-a03f8f014d21
Loxham, Matthew
8ef02171-9040-4c1d-8452-2ca34c56facb
Eason, Robert
e38684c3-d18c-41b9-a4aa-def67283b020
Mills, Benjamin
05f1886e-96ef-420f-b856-4115f4ab36d0
Grant-Jacob, James
c5d144d8-3c43-4195-8e80-edd96bfda91b
Xie, Yunhui
f2c3b0e4-8650-4e04-80e5-04505f45bdd6
MacKay, Benita, Scout
318d298f-5b38-43d7-b30d-8cd07f69acd4
Praeger, Matthew
84575f28-4530-4f89-9355-9c5b6acc6cac
McDonnell, Michael, David Tom
bc7b6423-bd77-424d-81e7-4e5448e926cb
Heath, Daniel J
d53c269d-90d2-41e6-aa63-a03f8f014d21
Loxham, Matthew
8ef02171-9040-4c1d-8452-2ca34c56facb
Eason, Robert
e38684c3-d18c-41b9-a4aa-def67283b020
Mills, Benjamin
05f1886e-96ef-420f-b856-4115f4ab36d0

Grant-Jacob, James (2019) Dataset for Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi. University of Southampton doi:10.5258/SOTON/D0758 [Dataset]

Record type: Dataset

Abstract

This dataset supports the publication: Grant-Jacob, J., Xie, Y., MacKay, B. S., Praeger, M., McDonnell, M. D. T., Heath, D. J., ... Mills, B. (2019). Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi. Environmental Research Communications, 1(1) https://doi.org/10.1088/2515-7620/ab14c9

Text
D0758_README.txt - Text
Available under License Creative Commons Attribution.
Download (1kB)
Text
Figure_4_Data.txt - Dataset
Available under License Creative Commons Attribution.
Download (164B)
Image
Figure_1.bmp - Dataset
Available under License Creative Commons Attribution.
Download (3MB)
Image
Training_diagram.bmp - Dataset
Available under License Creative Commons Attribution.
Download (4MB)
Text
Figure_3a_.txt - Dataset
Available under License Creative Commons Attribution.
Download (195B)
Text
Figure_3b.txt - Dataset
Available under License Creative Commons Attribution.
Download (195B)

Show all 6 downloads.

More information

Published date: 2019

Identifiers

Local EPrints ID: 430738
URI: https://eprints.soton.ac.uk/id/eprint/430738
PURE UUID: 1a7881fd-a224-421e-8fd6-c9e2186018dc
ORCID for James Grant-Jacob: ORCID iD orcid.org/0000-0002-4270-4247
ORCID for Benita, Scout MacKay: ORCID iD orcid.org/0000-0003-2050-8912
ORCID for Matthew Loxham: ORCID iD orcid.org/0000-0001-6459-538X
ORCID for Robert Eason: ORCID iD orcid.org/0000-0001-9704-2204
ORCID for Benjamin Mills: ORCID iD orcid.org/0000-0002-1784-1012

Catalogue record

Date deposited: 09 May 2019 16:30
Last modified: 10 May 2019 00:38

Export record

Altmetrics

Contributors

UNSPECIFIED: Yunhui Xie
UNSPECIFIED: Benita, Scout MacKay ORCID iD
UNSPECIFIED: Matthew Praeger
UNSPECIFIED: Daniel J Heath
UNSPECIFIED: Matthew Loxham ORCID iD
UNSPECIFIED: Robert Eason ORCID iD
UNSPECIFIED: Benjamin Mills ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×