Xie, Yunxin, Zhu, Chenyang, Lu, Yue and Zhu, Zhengwei (2019) Towards optimization of boosting models for formation lithology identification. Mathematical Problems in Engineering, 2019, [5309852]. (doi:10.1155/2019/5309852).
Abstract
Lithology identification is an indispensable part in geological research and petroleum engineering study. In recent years, several mathematical approaches have been used to improve the accuracy of lithology classification. Based on our earlier work that assessed machine learning models on formation lithology classification, we optimize the boosting approaches to improve the classification ability of our boosting models with the data collected from the Daniudi gas field and Hangjinqi gas field. Three boosting models, namely, AdaBoost, Gradient Tree Boosting, and eXtreme Gradient Boosting, are evaluated with 5-fold cross validation. Regularization is applied to the Gradient Tree Boosting and eXtreme Gradient Boosting to avoid overfitting. After adapting the hyperparameter tuning approach on each boosting model to optimize the parameter set, we use stacking to combine the three optimized models to improve the classification accuracy. Results suggest that the optimized stacked boosting model has better performance concerning the evaluation matrix such as precision, recall, and f1 score compared with the single optimized boosting model. Confusion matrix also shows that the stacked model has better performance in distinguishing sandstone classes.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science
School of Electronics and Computer Science - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Electronics & Computer Science (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg)
School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.