The University of Southampton
University of Southampton Institutional Repository

Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal

Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal
Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal
Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.
0304-3894
120996
Otero-gonzález, Lila
9fead707-9c19-497c-8d19-4e885c381dd3
Mikhalovsky, Sergey V.
069cc234-fe97-4055-97ed-5bec73bf8d0d
Václavíková, Miroslava
ce15994a-c6ce-4b83-8580-eccf07cfb6b4
Trenikhin, Mikhail V.
c77ec016-0e7d-403a-ab99-83d957bd31fe
Cundy, Andrew B.
994fdc96-2dce-40f4-b74b-dc638286eb08
Savina, Irina N.
5e5c7acd-71ef-4fb3-baaf-0b98fec91845
Otero-gonzález, Lila
9fead707-9c19-497c-8d19-4e885c381dd3
Mikhalovsky, Sergey V.
069cc234-fe97-4055-97ed-5bec73bf8d0d
Václavíková, Miroslava
ce15994a-c6ce-4b83-8580-eccf07cfb6b4
Trenikhin, Mikhail V.
c77ec016-0e7d-403a-ab99-83d957bd31fe
Cundy, Andrew B.
994fdc96-2dce-40f4-b74b-dc638286eb08
Savina, Irina N.
5e5c7acd-71ef-4fb3-baaf-0b98fec91845

Otero-gonzález, Lila, Mikhalovsky, Sergey V., Václavíková, Miroslava, Trenikhin, Mikhail V., Cundy, Andrew B. and Savina, Irina N. (2020) Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal. Journal of Hazardous Materials, 381, 120996. (doi:10.1016/j.jhazmat.2019.120996).

Record type: Article

Abstract

Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.

Text
Manuscript_final_Otero_Gonzalez_et_al - Accepted Manuscript
Download (3MB)

More information

Accepted/In Press date: 10 August 2019
e-pub ahead of print date: 12 August 2019
Published date: 5 January 2020

Identifiers

Local EPrints ID: 434158
URI: http://eprints.soton.ac.uk/id/eprint/434158
ISSN: 0304-3894
PURE UUID: 208e210d-8901-4cc9-97d9-e97650ae24e7
ORCID for Andrew B. Cundy: ORCID iD orcid.org/0000-0003-4368-2569

Catalogue record

Date deposited: 13 Sep 2019 16:30
Last modified: 07 Oct 2020 06:31

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×