The University of Southampton
University of Southampton Institutional Repository
Warning ePrints Soton is experiencing an issue with some file downloads not being available. We are working hard to fix this. Please bear with us.

Cardiac magnetic resonance radiomics: basic principles and clinical perspectives

Cardiac magnetic resonance radiomics: basic principles and clinical perspectives
Cardiac magnetic resonance radiomics: basic principles and clinical perspectives
Radiomics is a novel image analysis technique, whereby voxel level information is extracted from digital images and used to derive multiple numerical quantifiers of shape and tissue character. Cardiac magnetic resonance (CMR) is the reference imaging modality for assessment of cardiac structure and function. Conventional analysis of CMR scans is mostly reliant on qualitative image analysis and basic geometric quantifiers. Small proof-of-concept studies have demonstrated the feasibility and superior diagnostic accuracy of CMR radiomics analysis over conventional reporting. CMR radiomics has the potential to transform our approach to defining image phenotypes and, through this, improve diagnostic accuracy, treatment selection, and prognostication. The purpose of this paper is to provide an overview of radiomics concepts for clinicians, with particular consideration of application to CMR. We will also review existing literature on CMR radiomics, discuss challenges, and consider directions for future work.

cardiac magnetic resonance, image-based diagnosis, machine learning, radiomics, texture analysis
0195-668X
349-356
Raisi-Estabragh, Zahra
43c85c5e-4574-476b-80d6-8fb1cdb3df0a
Izquierdo, Cristian
6aea4a1f-2fd5-4700-acf5-0c9c07a326a0
Campello, Victor M.
70b294e4-d5f3-4f65-9d26-d0d6c6c8227d
Martin-Isla, Carlos
7501fb82-b913-4b2a-b0e0-19ccc9a4e60c
Jaggi, Akshay
3c44b68c-526b-43d4-932e-8dac54a91fa8
Harvey, Nicholas
ce487fb4-d360-4aac-9d17-9466d6cba145
Lekadir, Karim
b8de558a-869c-4574-b0d3-005dc52c3106
Petersen, Steffen E.
04f2ce88-790d-48dc-baac-cbe0946dd928
Raisi-Estabragh, Zahra
43c85c5e-4574-476b-80d6-8fb1cdb3df0a
Izquierdo, Cristian
6aea4a1f-2fd5-4700-acf5-0c9c07a326a0
Campello, Victor M.
70b294e4-d5f3-4f65-9d26-d0d6c6c8227d
Martin-Isla, Carlos
7501fb82-b913-4b2a-b0e0-19ccc9a4e60c
Jaggi, Akshay
3c44b68c-526b-43d4-932e-8dac54a91fa8
Harvey, Nicholas
ce487fb4-d360-4aac-9d17-9466d6cba145
Lekadir, Karim
b8de558a-869c-4574-b0d3-005dc52c3106
Petersen, Steffen E.
04f2ce88-790d-48dc-baac-cbe0946dd928

Raisi-Estabragh, Zahra, Izquierdo, Cristian, Campello, Victor M., Martin-Isla, Carlos, Jaggi, Akshay, Harvey, Nicholas, Lekadir, Karim and Petersen, Steffen E. (2020) Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. European Heart Journal, 21 (4), 349-356. (doi:10.1093/ehjci/jeaa028).

Record type: Article

Abstract

Radiomics is a novel image analysis technique, whereby voxel level information is extracted from digital images and used to derive multiple numerical quantifiers of shape and tissue character. Cardiac magnetic resonance (CMR) is the reference imaging modality for assessment of cardiac structure and function. Conventional analysis of CMR scans is mostly reliant on qualitative image analysis and basic geometric quantifiers. Small proof-of-concept studies have demonstrated the feasibility and superior diagnostic accuracy of CMR radiomics analysis over conventional reporting. CMR radiomics has the potential to transform our approach to defining image phenotypes and, through this, improve diagnostic accuracy, treatment selection, and prognostication. The purpose of this paper is to provide an overview of radiomics concepts for clinicians, with particular consideration of application to CMR. We will also review existing literature on CMR radiomics, discuss challenges, and consider directions for future work.

Text
revisedradmanuscript - Accepted Manuscript
Download (1MB)

More information

Accepted/In Press date: 6 February 2020
e-pub ahead of print date: 6 March 2020
Published date: April 2020
Keywords: cardiac magnetic resonance, image-based diagnosis, machine learning, radiomics, texture analysis

Identifiers

Local EPrints ID: 437790
URI: http://eprints.soton.ac.uk/id/eprint/437790
ISSN: 0195-668X
PURE UUID: 2b3ed1d8-4586-4ab0-9719-5cf58a628e11
ORCID for Nicholas Harvey: ORCID iD orcid.org/0000-0002-8194-2512

Catalogue record

Date deposited: 17 Feb 2020 17:31
Last modified: 26 Nov 2021 05:55

Export record

Altmetrics

Contributors

Author: Zahra Raisi-Estabragh
Author: Cristian Izquierdo
Author: Victor M. Campello
Author: Carlos Martin-Isla
Author: Akshay Jaggi
Author: Nicholas Harvey ORCID iD
Author: Karim Lekadir
Author: Steffen E. Petersen

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×