Rivera, Fernando, Miranda-Alcántara, Berenice, Orozco, Germán, Ponce De Leon Albarran, Carlos and Arenas Martinez, Luis Fernando (2020) Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid dynamics: mathematical and modelling aspects of porous media. Frontiers of Chemical Science and Engineering. (In Press)
Abstract
.
Description of electrolyte fluid dynamics in the electrode compartments by mathematical models can be a powerful tool in the development of redox flow batteries and other electrochemical reactors. In order to determine their predictive capability, turbulent Reynolds-averaged Navier–Stokes (RANS) and free flow plus porous media (Brinkman) models were applied to compute local fluid velocities taking place in a rectangular channel electrochemical flow cell used as the positive half-cell of a cerium-based redox flow battery for laboratory studies. Two different platinized titanium electrodes were considered, a plate plus a turbulence promoter and an expanded metal mesh. Calculated pressure drop was validated against experimental data obtained with typical cerium electrolytes. It was found that the pressure drop values were better described by the RANS approach, whereas the validity of Brinkman equations was strongly dependent on porosity and permeability values of the porous med
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Southampton Marine & Maritime Institute (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Natural and Environmental Sciences (pre 2018 reorg) > Institute for Life Sciences (pre 2018 reorg)
Current Faculties > Faculty of Environmental and Life Sciences > Institute for Life Sciences > Institute for Life Sciences (pre 2018 reorg)
Institute for Life Sciences > Institute for Life Sciences (pre 2018 reorg) - Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Energy Technology Group
Mechanical Engineering > Energy Technology Group
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.